Este sitio web utiliza cookies para mejorar la experiencia de usuario y obtener datos estadísticos. Si continua navegando se considera que acepta nuestra política de cookies. |
Plantas propulsoras para buques |
GENERALIDADES RELATIVAS A LA DISPOSICIÓN DE LAS MÁQUINAS La disposición de la maquinaria debe proporcionar un equilibrio entre las funciones de control de los equipos, de su funcionamiento, del mantenimiento y supervivencia, contenidas todas ellas dentro de una o varias cámaras de máquinas de volumen óptimo. Se
denomina Cámara de Máquinas al volumen del buque que dividido en
compartimentos contiene la planta de maquinaria propulsora y la
maquinaria auxiliar. La
planta propulsora debe de proporcionar la potencia necesaria para
impulsar al buque a la velocidad para la cual fue proyectado
ininterrumpidamente, debe de permitir realizar la parada, ciada y debe
de satisfacer las necesarias capacidades de maniobra para las que fue
diseñado el buque. Todas
estas operaciones deben de ser llevadas a cabo con seguridad, y el
mantenimiento y manejo de la planta deben de estar dentro de las
aptitudes de los tripulantes. Otros
factores importantes que pueden inclinar la balanza al seleccionar la
planta propulsora son: El espacio y disposición, consumo y calidad del
combustible, peso total de la planta, coste de la planta, fiabilidad,
facilidad de mantenimiento y generación de ruidos y vibraciones. Aunque
estos factores son de importancia secundaria frente a la seguridad de
funcionamiento. Algunos de ellos pueden tener mucha importancia para un
tipo de buque y en cambio ser de importancia secundaria para otro. Por
ejemplo el peso y volumen de la cámara de máquinas en un petrolero es
de menor importancia que para un barco de guerra y con el consumo de
combustible pasaría lo contrario. Existe
una gran variedad de tipos de plantas propulsoras, algunas son
ventajosas en algún apartado pero penalizan en otro, su aplicación
depende del tipo de buque en concreto. Entre los sistemas de maquinaria
principal más utilizados actualmente son: 1-
Planta de vapor, compuestas por calderas convencionales o por
generadores de vapor de energía nuclear, turbinas y engranaje reductor. 2- Motores diesel de 2 tiempos lentos, directamente acoplados a la hélice. 3- Motores diesel de 4 tiempos de media y alta velocidad con engranaje reductor. 4- Turbinas de gas con engranaje reductor. 5-
Propulsión eléctrica con motores de corriente continua o alterna,
alimentados por la energía generada en alternadores movidos por una
máquina primaria de vapor o de combustión interna. 6- Plantas combinadas, existen muchas variantes, las más frecuentes son: -
COGAG, combinación de turbina de gas y turbina de gas, en la que ambas
pueden participar juntas o separadas en la obtención de la potencia
propulsora. -
CODAG, combinación de motor diesel y de turbina de gas, para la
obtención de velocidades bajas y económicas funciona solo el motor
diesel y la turbina de gas se acopla para alcanzar altas velocidades. - COGAS, combinación de turbina de gas y turbina de vapor, funcionando de forma conjunta ambas. -
CODOG, combinación de motor diesel o turbina de gas, funcionan de
forma independiente (no de forma conjunta sumando las potencias), la
turbina de gas solo para altas velocidades y el motor diesel para
velocidad económica de crucero. Excepto
para cortos periodos, cuando se acercan o salen de puerto, muchos
barcos mercantes funcionan con alto porcentaje de la tasa de potencia,
el programa de funcionamiento puede incluir periodos a velocidad
reducida, pero raras veces con velocidades por debajo de las
correspondientes a media potencia. Consecuentemente, es de primera
importancia, para buques mercantes, un funcionamiento económico a la
velocidad sostenida cuando realizan la ruta comercial. La
situación con buques de guerra es diferente, aquí la planta debe de
ser diseñada para satisfacer la más alta velocidad requerida en el
proyecto, aunque la máxima potencia raramente es utilizada. Durante la
mayor parte del tiempo funciona a velocidad de crucero, en torno al 60%
de la velocidad máxima o 20% de la máxima potencia propulsora.
Lógicamente en estos buques prima un funcionamiento económico a la
velocidad de crucero. Hay
que tener siempre presente que el diseño de la planta propulsora debe
reflejar plenamente el perfil de funcionamiento del buque. Se tratará
de conseguir el funcionamiento más económico para el modo más frecuente
de funcionamiento y para este régimen se diseñarán las medidas
económicas, como son: recuperación del calor residual, rendimiento
óptimo de la hélice, menor consumo específico para la planta, etc. La
planta propulsora debe proporcionar potencia suficiente para alcanzar
la velocidad deseada, pero además suele añadirse una potencia adicional
en reserva para compensar el deterioro del rendimiento con el tiempo.
Factores a tener en cuenta al establecer la reserva de potencia incluyen
el ensuciamiento del casco, deterioro de la superficie de las hélices
(causadas por cavitación y erosión) y disminuciones en el rendimiento
de la máquina motriz. Es también importante que el buque tenga una
razonable capacidad para mantener la velocidad con oleaje moderado y
bajo condiciones ambientales adversas. El
“factor de servicio” es el porcentaje de la potencia normal, continua,
al eje, usada para establecer la velocidad sostenida en el mar. Suele
ser un 80% (factor 0,8) para portacontenedores, que suelen hacer
cargados varias etapas de un viaje, y en torno a un 90% para petroleros y
bulk carriers, ya que estos suelen hacer parte del viaje en lastre. El
tipo de planta propulsora también influye, ya que turbinas de gas y de
vapor son generalmente utilizadas para funcionar a niveles de potencia
cercanos al máximo, mientras que los motores diesel no se deben
utilizar para funcionar a más de un 90% de su potencia nominal. Por este
motivo la potencia máxima continua instalada en un buque diesel supera
a la de otro buque similar pero con propulsión por turbina. La zona de
funcionamiento del motor suele coincidir con la de más bajo consumo
específico de combustible, y en suma, la proyección para la vida de
servicio de los componentes, recomendaciones para inspecciones,
mantenimiento e intervalos de revisión, son normalmente basados en el funcionamiento en esa zona. El “margen de la máquina” es la diferencia entre la potencia continua en servicio y la potencia máxima nominal. En
cuanto a la selección del tipo de planta propulsora en función de la
potencia necesaria, existen muchas posibilidades de combinaciones, ya
que por ejemplo un gran buque mercante puede ser propulsado igualmente
por un gran motor diesel lento, o por el contrario llevar dos motores
de media velocidad de cuatro tiempos que producirían una potencia total
equivalente. (Fuente: www.mandieselturbo.com). Actualmente
en plantas propulsoras para buques mercantes, en general, los motores
semirrápidos y de media velocidad se utilizan casi siempre en potencias
bajas y medias hasta unos 15.000 hp, y con potencias superiores se
suelen utilizar motores lentos de dos tiempos, a menos que exista algún
motivo que lo desaconseje como puede ser falta de espacio, peso
excesivo, vibraciones u otros motivos. En
buques de guerra ya entra en consideración los aspectos de peso y
empacho, perdiendo importancia el factor de la economía de combustible,
por lo cual se utilizan otros sistemas que permiten obtener elevadas
cifras de potencia con mucho menos empacho y peso, estos sistemas se
basan en plantas propulsoras generalmente con motores diesel
semirrápidos y turbinas de gas. El
tipo de hélice puede ser de paso controlable o paso fijo. Una hélice
de paso controlable tiene las palas dispuestas para que a través de un
mecanismo interior al núcleo, manejado a distancia, puedan girar las
palas y así adquirir distintos pasos. Cada uno de estos, dará lugar a
una curva o ley del propulsor particular, por lo que se pueden obtener
una familia de curvas del propulsor para un buque determinado. La
hélice de paso controlable tiene la ventaja de aumentar la capacidad de
maniobra y flexibilidad, pudiendo pasar de marchar avante a ciar en
breves segundos y sin tener que cambiar el sentido de giro del
propulsor, permite además que la máquina motriz gire siempre a sus
revoluciones óptimas, de mejor rendimiento. Puede adaptar el paso de la
hélice a las condiciones de funcionamiento aumentando la eficacia y
disminuyendo el consumo. Por ejemplo en un remolcador dando remolque o
un petrolero a plena carga se reduciría el paso de la hélice para ganar
poder de tracción. Mientras que navegando libre o en lastre se
aumentaría el paso para ganar más velocidad. En general una hélice de
paso controlable hace un mejor uso de la potencia disponible del motor a
través de un mayor margen de condiciones de funcionamiento, comparada
con una hélice de palas fijas. La
hélice de paso fijo es más económica, sencilla y fiable, y además
puede alcanzar un rendimiento superior, ya que puede disponer de un
núcleo más pequeño y las formas de las palas más apropiadas para obtener
un mejor rendimiento. Otro
factor a tener en cuenta en la elección del propulsor es que cuanta
mayor es la potencia necesaria para mover el buque, mayor deberá de ser
la hélice y cuanto mayor sea esta, menores revoluciones deberá
tener, ya que las velocidades relativas en sus extremos aumentarían en
exceso, reduciendo el rendimiento y propiciando la cavitación. La
relación entre el diámetro de la hélice y sus revoluciones óptimas es
un factor importante a la hora de la elección de la planta propulsora. En
general los buques pueden tener; una, dos, tres, o cuatro hélices.
Desde el punto de vista de los costes iniciales y de funcionamiento (el
rendimiento hidrodinámico es mejor con una hélice) menos propulsores es
preferible. La selección de múltiples propulsores puede ser necesaria
con potencias elevadas en buques de poco calado y con diámetros de las
hélices limitados, lo que provocaría la sobrecarga del propulsor
propiciando la cavitación si se empleara una sola hélice. En suma,
puede haber otros factores para cada caso específico que aconsejen el
empleo de múltiples propulsores, como son reducir la vulnerabilidad o
mejorar la maniobrabilidad. Buques de guerra, remolcadores, buques
rápidos; ferrys, portacontenedores, transbordadores, embarcaciones
deportivas, son buques típicos para incorporar múltiples propulsores.
Mientras que buques en los que prima la economía de consumo y
construcción, como son los buques mercantes, pesqueros, etc. suelen
tener solamente una hélice. En
la evolución de los motores diesel lentos, se hizo un gran esfuerzo en
reducir sus revoluciones, que son las de la hélice, con lo cual se
mejoró su rendimiento, haciendo necesaria menos potencia para obtener la
misma velocidad. Por este motivo, principalmente en motores de mucha
potencia, propios de grandes petroleros y bulkcarriers, se propusieron
máquinas que pudieran girar a bajas revoluciones. Desde
la perspectiva del ahorro energético los mejores rendimientos se
obtienen con hélices de gran diámetro acopladas a motores de bajas
revoluciones. Dado el aumento de tamaño y calado de los buques y dadas
las mejoras en la fundición y maquinado de hélices, sería posible
utilizar hélices mayores y por tanto motores aún más lentos que los
actualmente disponibles en el mercado. Hoy día los motores para
portacontenedores se han estandarizado en unas 100-104 rpm, pero lo
normal sería que en el futuro se empezasen a utilizar motores girando
más despacio. Para
unas mismas rpm y un diámetro exterior admisible de la hélice, surge
aquí como evidente el interés de las hélices con placas de punta de
pala y en particular de las hélices tipo CLT (un desarrollo español)
para mejorar el rendimiento energético global. Tras años de dudas y
avances a paso lento, las ventajas de rendimiento de estas hélices
parecen ya confirmadas fuera de dudas por los proyectos de I+D llevados
a cabo en los últimos años. Otras
medidas propuestas para mejorar los rendimientos del propulsor, se
basan en colocar a popa de la hélice principal una hélice de tipo pod
accionada por un motor eléctrico y girando en el sentido contrario,
formado con la hélice principal un conjunto similar a una hélice
contrarrotativa, con el que se pueden conseguir mejoras propulsivas del
orden del 10 %. Hay ferries en Japón con este dispositivo, y se ha
propuesto para buques de otros tipos; petroleros y portacontenedores. Otro
paso adelante sería la adopción de hélices contrarrotativas
propiamente dichas. Esto no sería una novedad absoluta, porque a
principios de los años 90 se hicieron en Japón experiencias a escala
real, instalando hélices contrarrotativas a un VLCC y un carguero de
menor tamaño. Los ensayos de canal y experimentos a escala real indican
que con este dispositivo se puede obtener una mejora del 17-20 % en el
rendimiento propulsivo. Evidentemente se trata de un sistema mecánico
muy complejo, con algunos problemas no triviales de fiabilidad y que
requiere un mantenimiento específico, por lo que hasta ahora se ha
evitado a pesar de sus indudables méritos hidrodinámicos. En
general, el espacio necesario para la planta propulsora es considerado
como espacio perdido, ya que no podrá ser utilizado para otros
propósitos más productivos, como carga o armamento. Se hace el máximo
esfuerzo para reducir las dimensiones de las cámaras de máquinas.
Especial importancia se le da a la longitud de la cámara de máquinas en
buques de carga, ya que es espacio perdido para carga. Las
plantas más pequeñas son las de turbina de gas con motores eléctricos
ya que las turbinas accionan generadores eléctricos y no están
directamente unidas a los ejes de cola, posibilitando hacer cámaras de
máquinas muy cortas. Idéntica disposición se puede adoptar con
propulsión diesel-eléctrica con motores diesel semirrápidos. Las
cámaras de máquinas más grandes son las de motores diesel lentos,
aunque compensan algo su gran tamaño en que van directamente acoplados a
las hélices, sin engranajes reductores. Las
cámaras con turbinas de vapor, también son muy voluminosas, sobre todo
para pequeñas potencias. Son especialmente interesantes para potencias
elevadas, por encima del rango de potencia de los diesel. Empezando
por el tipo de combustible, hay que decir que el carbón, uranio y gas
natural juegan un importante papel en la producción de energía
mundial, pero en el sector naval la gran mayoría de los buques
funcionan con derivados del petróleo. El combustible más utilizado es
el fuel-oil, por razones de precio, cuanto más alta viscosidad tiene,
más bajo es su precio, aunque la alta viscosidad va asociada a grandes
concentraciones de impurezas y constituyentes perjudiciales. El fuel
seleccionado es determinante en el coste, con consideraciones dadas para
factores como coste inicial, costes de mantenimiento y manejo, costes
de mantenimiento de equipos y complejidad operacional. Hay
que ver qué metales estarán en contacto con el fuel y los productos de
combustión, previsiones para calentamiento y tratamiento
(neutralización de constituyentes), previsiones para protección de la
corrosión y eliminación de escorias y grasas. La utilización de un tipo
de fuel de peor calidad puede imponer requisitos adicionales para el
diseño de la planta. El
fuel-oil dependiendo de su fuente geográfica puede variar su contenido
de residuos y sustancias incombustibles. Ambos, la cantidad y
composición química de los residuos y cenizas del fuel pueden tener una
gran influencia en la vida de los equipos y su funcionamiento. Compuestos
de sodio y vanadio, los cuales se forman en los productos de
combustión, tienden a tener relativamente bajas temperaturas de fusión y
pueden propiciar la acumulación de carbónillas y escorias. Por otra
parte, el vanadio es altamente corrosivo a temperaturas por encima de su
punto de fusión. El sodio y vanadio son compuestos no deseables para
el fuel-oil en el rango de las altas temperaturas. En
el rango de las bajas temperaturas el elemento más perjudicial es el
azufre. Durante el proceso de combustión este es oxidado y si la
temperatura de los productos de combustión baja por debajo de la
temperatura de rocío del ácido sulfúrico, los óxidos de azufre pueden
ser hidrolizados para formar ácido sulfúrico, que es muy corrosivo. La
baja calidad del fuel puede con el tiempo causar un deterioro de la
eficiencia de la planta térmica, la selección del tipo de fuel es un
proceso complejo de gran influencia en el éxito del barco y debe de
realizarse un análisis de los costes del ciclo de vida además de
mantenimientos y complejidades asociadas al tipo de fuel. En
lo referente al consumo de combustible, diferentes tipos de plantas
propulsoras, con sus distintas eficiencias térmicas y en consumo
específico de combustible, pueden resultar en coincidencia en la
eficiencia práctica. El
consumo de aceite lubricante no es de mucha importancia en plantas
propulsoras excepto si es de motores diesel. Para estos es de 0.5% a 1%
del consumo de fuel-oil, aunque este valor es pequeño, el coste es
elevado ya que el precio del aceite lubricante supera en mucho al del
fuel-oil. La
gráfica siguiente muestra los consumos específicos necesarios para
propulsión, auxiliares y cargas usuales de hotel, no incluyendo
servicios extraordinarios como cargas de hotel en buques de pasajeros o
calentamiento y limpieza de tanques en petroleros. (Fuente: Marine Engineering) La
gráfica sirve solo de orientación para ver las diferencias de consumos
en instalaciones prácticas, ya que cada tipo de planta pude mejorar
bastante su consumo dependiendo de su complicación y sofisticación. La
planta por turbina de vapor, puede mejorarse su rendimiento adoptando
el ciclo con recalentamiento y regenerativo calentando el agua de
alimentación con extracciones de vapor. Las plantas de turbina de vapor
son generalmente optimizadas para una potencia determinada y, como
resultado, las gamas de potencia de las turbinas de vapor suelen ser
próximas a sus capacidades de diseño (no existe la práctica a limitar
superiormente la máxima potencia de las turbinas de vapor, como ocurre
con los motores diesel). El vapor generalmente se obtiene por medio de
calderas de mecheros, consumiendo fuel-oil de la peor calidad (también
se puede emplear carbón, gas natural, etc.). Con el bajo precio del
fuel y menor consumo de aceite de lubricación, durante algún tiempo fue
posible compensar su peor consumo específico frente a otros tipos de
plantas propulsoras. Las
turbinas de gas aeroderivadas están en continua evolución, y cada día
salen nuevos modelos que mejoran a las actuales, fruto de la
investigación en turbinas para aviación. Sin embargo tienen el
inconveniente de que los rendimientos del ciclo son bastante bajos (en
torno al 25 %). Esto hace que las condiciones de las energías
residuales, básicamente los gases de escape de la turbina, tengan un
gran contenido energético debido a su alta temperatura de salida
(alrededor de 450 o 550º C) y a los grandes caudales que se generan, lo
que hace que la recuperación de la energía contenida en estos gases
sea muy eficiente. Debido a que el calor residual está concentrado en
los gases de escape y es fácilmente recuperable, puede usarse para
generar vapor, que movería una turbina de vapor, adoptando entonces el
ciclo combinado COGAS (combination gas and steam), que tiene muy buen
consumo específico, similar a los motores diesel. En
el caso de las turbinas de gas Heavy Duty derivadas de la industria,
la principal mejora está en recuperar el calor de los gases de escape
para calentar el aire de admisión (ciclo regenerativo). Además de poder
aprovechar el resto de la energía de los gases de escape como se indica
en el caso anterior para las turbinas aeroderivadas. Estas turbinas
son más robustas, pesadas y fáciles de reparar. Son técnicamente menos
avanzadas, emplean un grado de compresión más bajo, con temperaturas de
entrada en la turbina también más bajas, por tanto su rendimiento es
menor que las aeroderivadas. Un
inconveniente importante para las turbinas de gas está en su poca
tolerancia para quemar fuel-oil, normalmente tendrán que consumir gasoil
o gas natural, sobre todo si son turbinas derivadas de la aviación. Un
factor adicional, es la gran sensibilidad de las turbinas de gas a la
temperatura ambiente, al aumentar la temperatura ambiente, disminuyen
la potencia y en consecuencia aumentan su consumo específico. (Fuente: www.mandieselturbo.com). Los
motores diesel de media velocidad, siguen el ciclo de cuatro tiempos
con sobrealimentación, no son reversibles y debido a su elevada
velocidad (400-600 rpm) normalmente precisan de engranajes reductores.
Este tipo de motores han evolucionado mucho en los últimos años
mejorando sus consumos específicos de combustible y ampliando cada vez
más los límites superiores de potencia máxima. La capacidad para
consumir fuels pesados también los ha aproximado mucho a los motores
lentos. Estas ventajas, además de un peso y empacho sensiblemente menor
que los motores de lentos, los convierte en muchas ocasiones en las
plantas propulsoras más apropiadas para la propulsión de buques,
siempre y cuando la potencia requerida esté dentro de los rangos
aplicación de este tipo de motores. Los
motores diesel lentos tienen las más altas eficiencias térmicas,
aunque parece que están llegando al límite de evolución y no se esperan
grandes mejoras. Los diesel lentos son especialmente diseñados para la
propulsión naval y son más tolerantes con la baja calidad del fuel que
los diesel de media velocidad (normalmente de 4 tiempos). Sus
cualidades de economía son muy competitivas y su simplicidad facilita
la automatización. Los costes en mantenimiento son más bajos que en los
diesel de media velocidad. El consumo específico de combustible es
también mejor en los diesel lentos y el calor residual es más
fácilmente aprovechable, aunque el consumo de aceite lubricante suele
ser mejor en los diesel de media velocidad y el consumo de combustible
se está aproximando bastante en los últimos años. Las
energías residuales que se producen e los motores diesel son de un
contenido energético bastante menor que el producido en turbinas de gas
de la misma potencia, siendo las fuentes de energía aprovechables
principales los gases de escape (con temperaturas de 250-350º C y
caudales sustancialmente menores que las TG), y las fuentes de
refrigeración del motor (principalmente agua de refrigeración de
camisas a 90º C). Por tanto la eficiencia total de la planta puede
mejorarse recuperando el calor residual de los gases de escape mediante
calderas y el agua caliente de refrigeración que normalmente se
utiliza en generadores de agua dulce. Otras posibilidades de mejorar la
eficiencia son la utilización de turbinas de gas de exhaustación (TCS)
y tomas de potencia para alternadores de cola. (Fuente: www.mandieselturbo.com). La
Propulsión eléctrica, normalmente accionada con motores diesel de
media velocidad, tiene el inconveniente de que se incrementa el consumo
específico frente a la utilización de transmisión con engranajes
reductores, debido a las pérdidas inherentes a la doble conversión de la
energía: mecánica-eléctrica y eléctrica-mecánica. Permite por otra
parte mucha más flexibilidad si la potencia punta es proporcionada por
múltiples máquinas motrices/generadores, que pueden ser detenidas
cuando se trabaja a cargas parciales, esto mejora la economía de
combustible y permite que las máquinas motrices que están funcionando
trabajen a su velocidad óptima de mejor rendimiento. El
elevado peso de una planta propulsora va generalmente asociado a su
volumen, es por tanto deseable que la planta sea lo más ligera posible,
sobre todo en buques pequeños, ya que se trata de un tonelaje que no
tiene utilidad e impide transportar más carga. También en petroleros,
donde la capacidad de carga está limitada por restricciones de calado,
el utilizar una planta más ligera permite llevar más carga. Aunque en
ocasiones puede ser ventajoso un peso algo elevado para algunos buques
de carga, cuando navegan sin carga el peso de la maquinaria propulsora
puede ser beneficioso en el aspecto de que su baja posición mejora la
estabilidad del buque. El
peso de las plantas diesel y de turbina de vapor son las más pesadas
mientras que las más ligeras son turbinas de gas en ciclo abierto,
derivadas directamente de la aviación. En
la gráfica se comparan distintos tipos de plantas de combustibles
fósiles con la planta nuclear, en esta el peso del combustible no es
significativo. (Fuente: Marine Engineering). Valoramos
aquí la inversión inicial necesaria para adquirir la máquina
principal, así como los necesarios equipos auxiliares que debe llevar
para su adecuado funcionamiento. Considerando también los costes
relativos su instalación, es decir, lo que cuesta tener instalada la
planta propulsora en el buque lista para funcionar. Los precios de las plantas son de mucha
importancia y también muy variables, ya que están fuertemente
condicionados por factores diversos como: costes de materiales y mano
de obra. Hay que tener presente que a la hora de
realizar la selección de la máquina propulsora, tres tipos de costes
deben de ser evaluados: costes iniciales (precio de la planta
instalada, costes de instalación, etc.), costes variables (combustible,
mantenimiento, tripulación, etc.), costes eventuales (derivada de la
fiabilidad y disponibilidad esperada). En general, para los buques mercantes los
costes de operación (costes de combustible, personal necesario y
mantenimiento requerido) es la consideración fundamental cuando
evaluamos los candidatos para seleccionar la planta propulsora,
teniendo los costes iniciales una importancia relativa. Enumeramos a continuación los tipos más habituales de plantas propulsoras utilizadas en buques civiles: • Los precios de las plantas con diesel lentos, son las que tienen el precio más elevado. • Las plantas de vapor tienen un coste elevado para potencias bajas, pero son tanto más rentables cuanto mayor es la potencia. • Las plantas con diesel de media velocidad
tienen el precio más bajo en la gama más baja de potencia, pero para
grandes potencias son menos favorables. • Las instalaciones para aprovechamiento de
la energía residual de los motores diesel tienden a encarecer el
precio de la planta propulsora. • Las turbinas de gas tienen un precio
bastante variable dependiendo de su tipo (aeroderivadas, heavy-duty,
con ciclo regenerativo, etc). En caso de emplearse ciclos combinados
como COGAS, (combinación de turbina de gas y de vapor) el coste de la
complicación técnica para mejorar su rendimiento generalmente también
incrementa su precio, siendo éste similar al de los diesel lentos. En
este caso serían más rentables cuanto más grandes sean las potencias. Fuentes: www.mandieselturbo.com, Marine Engineering, Roy L. Harrington, (edic. 1992), Máquinas para la Propulsión de Buques, Enrique Casanova Rivas, (edic. 2001, Pounder’s Marine Diesel Engines and Gas Turbines, Doug Woodyard, (8ª edic. 2004), Evolución de la Propulsión Mecánica, Luis de Mazarredo (edic. 1992). |
Publicado el 2013-12-31 11:21:19 por Carlos Rodriguez |
Twittear |