Este sitio web utiliza cookies para mejorar la experiencia de usuario y obtener datos estadísticos. Si continua navegando se considera que acepta nuestra política de cookies. Aceptar
¿Que es Scilab?
 
Scilab es un software de código abierto, multiplataforma y orientado a cálculo numérico y con un lenguaje de programación de alto nivel, por ello puede utilizarse en problemas de simulación para aplicaciones de ingeniería y científicas. Scilab cubre un amplio espectro de áreas, tales como las siguientes:
  •     Aeroespacial,
  •     Automoción,
  •     Energía,
  •     Defensa,
  •     Finanzas,
  •     Química,
  •     Biología,
  •     Medicina ...


Scilab es actualmente desarrollado por Scilab Enterprises, bajo la licencia CeCILL, compatible con la GNU General Public License. Se puede descargar gratis en la página web: www.scilab.org


Scilab está disponible para sistemas operativos Microsoft Windows y GNU/Linux, tanto plataformas de 32 como de 64 bits, y Mac OS X.

Los requerimientos del sistema para Microsoft Windows XP, 7, 8, con procesador Pentium IV o equivalente, 1 GB RAM (2 GB recomendado), y 600 MB de espacio en disco duro.

Scilab fue desarrollado inicialmente por INRIA (Institut National de Recherche en Informatique et Automatique) y la ENPC (École Nationale des Ponts et Chaussées) desde 1990. El Consorcio Scilab (Scilab Consortium) fue creado en mayo de 2003 para ampliar y promover Scilab como software de referencia en todo el mundo en el mundo académico y la industria. Scilab Consortium está compuesto actualmente por 18 miembros, INRIA, DIGITEO, ECOLE CENTRALE DE PARIS, ECOLE POLYTECHNIQUE, ENGINSOFT France, PSA, PEUGEOT, CITROËN y RENAULT entre otros. Desde julio de 2012, Scilab Enterprises desarrolla y publica Scilab.

Scilab Integra un gran número de funcionalidades:
  • Matemáticas y de simulación: Scilab proporciona alrededor de 1.700 funciones matemáticas para aplicaciones de ingeniería y ciencias habituales incluyendo operaciones matemáticas y análisis de datos.
  • Visualización 2D y 3D: Funciones de gráficos para visualizar, anotar y exportación de datos y muchas maneras de crear y personalizar diferentes tipos de gráficos y tablas.
  • Optimización: Algoritmos para resolver problemas de optimización con restricciones continuas y discretas y sin restricciones.
  • Estadísticas: Herramientas para realizar análisis de datos y modelización
  • Diseño de Sistemas de Control y Análisis: Algoritmos y herramientas para el estudio del sistema de control
  • Procesamiento de Señales: Visualizar, analizar y filtrar las señales en los dominios de tiempo y frecuencia.
  • Desarrollo de aplicaciones: Funcionalidades nativas Aumentar Scilab y gestionar intercambios de datos con herramientas externas.
  • Xcos – sistemas modelador y simulador: Sistemas de modelado mecánico, circuitos hidráulicos, sistemas de control, etc.
Xcos (modelado y simulación)

La herramienta Xcos es el equivalente al Simulink de Matlab y con él se pueden resolver ecuaciones diferenciales, por lo que con ello podemos hacer simulaciones de sistemas dinámicos.



El Xcos en Scilab, es un entorno de diagrama de bloques para la simulación y diseño basado en modelos. Estos permiten la simulación, generación automática de código, prueba continua y verificación de sistemas embebidos.

Ofrecen un editor gráfico, bibliotecas de bloques personalizables, solucionadores de modelado y simulación de sistemas dinámicos. Están basados en la lógica de los diagramas de bloques, siendo los bloques personalizados bloques que incluyen funciones escritas previamente, lo que permite incluir en los diagramas muchas acciones de forma rápida y eficiente.

Son módulos integrados con los programas principales, lo que le permite incorporar algoritmos de modelos y exportar los resultados de simulación para el análisis. Estos están especialmente pensados para el análisis y diseño de sistemas de control, aunque es totalmente útil en el estudio de cualquier tipo de sistema dinámico: lineal, no lineal, continuo, discreto o híbrido. El análisis del sistema, mediante simulación, se puede efectuar desde el menú de simulación asociado a todo modelo, desde la línea de comandos del programa principal o desde cualquier programa.

Durante la simulación no es posible modificar los parámetros generales, pero si es posible efectuar cambios en los parámetros específicos de cada bloque, dotando así de un entorno interactivo muy útil para la realización de pruebas. Adicionalmente a la simulación es posible: obtener un modelo lineal del sistema frente a determinadas perturbaciones, obtener las condiciones de equilibrio del sistema a partir de distintas condiciones iniciales y utilizar toda la potencia de los programas para el análisis de datos o para el análisis y diseño del modelo lineal.

 
Desarrollo de aplicaciones con interfaz gráfica

Una herramienta integrada en Toolbox de Scilab es GUI Builder, la cual permite realizar aplicaciones con interfaz gráfica, las cuales pueden mostar los resultados de los cálculos a partir de la variación de parámetros de entrada. Las posibilidades que ofrece esta aplicación son muy interesantes en proyectos de ingeniería.



 
Toolboxes

Existe un gran número de herramientas o módulos que se pueden instalar gratuitamente en Scilab y extienden las capacidades del programa según las necesidades. Se pueden consultar en: http://atoms.scilab.org/

Para instalar módulos, podemos abrir Atoms haciendo click en Applications->Module Manager ATOMS, seleccionamos la aplicación y ATOMS la descarga de internet y la instala.




CURSOS DE FORMACIÓN RELACIONADA:

Si necesita recibir formación específica que le capacite en el manejo de Scilab, le recomendamos el siguiente curso:





LINKS:

- Curso de Scilab
- Scilab (web oficial)
- Scilab Toolboxes


 
Publicado el 2018-05-17 23:32:25 por Raúl Trabazo & Carlos Rodríguez | Abrir
 
Los Autómatas Programables (PLC)
 
Un autómata programable (o PLC) según la definición dada por la IEC 61131, es un equipo electrónico programable diseñado para ser utilizado en un entorno industrial, que utiliza una memoria programable para el almacenamiento interno de instrucciones orientadas al usuario, para implantar unas soluciones específicas tales como funciones lógicas, secuencia, temporización, recuento y funciones aritméticas con el fin de controlar mediante entradas y salidas, digitales y analógicas diversos tipos de máquinas o procesos.



Los autómatas programables surgen inicialmente en Estados Unidos, en la industria del automóvil (General Motors, 1968), para dar respuesta a la necesidad de incrementar el grado de automatización de las cadenas de producción que hasta ese momento estaba basada en sistemas cableados de relés. Con la aparición del PLC se consiguió reducir los tiempos y los costes de fabricación de los vehículos, aumentando al mismo tiempo la calidad del producto.


Componentes del sistema

El autómata programable es un sistema basado en un microprocesador, siendo sus partes fundamentales la CPU, la Memoria y el Sistema de Entradas y Salidas (E/S).

La CPU realiza el control interno y externo del autómata y la interpretación de las instrucciones del programa. A partir de las instrucciones almacenadas en la memoria y de los datos que recibe de las entradas, genera las señales de las salidas. La memoria se divide en dos bloques, la memoria de solo lectura o ROM (Read Only Memory) y la memoria de lectura y escritura o RAM (Random Access Memory).

En la memoria ROM se almacenan programas para el correcto funcionamiento del sistema, como el programa de comprobación de la puesta en marcha y el programa de exploración de la memoria RAM.

La memoria RAM se ocupa de la memoria de datos, en la que se almacena la información de los estados de las entradas y salidas y de variables internas. Y la memoria de usuario, en la que se almacena el programa con el que trabajará el autómata.

El sistema de Entradas y Salidas (E/S) recoge la información del proceso controlado (Entradas) y envía las acciones de control del mismo (salidas). En general, las entradas y salidas (E/S) de un autómata pueden ser discretas, analógicas, numéricas o especiales.

Los dispositivos de entrada pueden ser pulsadores, interruptores, finales de carrera, termostatos, presostatos, detectores de nivel, detectores de proximidad, contactos auxiliares, etc.

Los dispositivos de salida son también muy variados: Pilotos indicadores, relés, contactores, arrancadores de motores, válvulas, etc. En el siguiente punto se trata con más detalle este sistema.


Ventajas y desventajas

En comparación con los sistemas cableados basados en relés, los autómatas programables presentan las siguientes ventajas:

  • Menor tiempo en la elaboración de los proyectos. Se trabaja desde el PC en entorno de programación, y se puede simular el funcionamiento de forma virtual.
  • Posibilidad de introducir modificaciones en la lógica de control cargando un nuevo programa, con lógica cableada (relés), hay que cambiar componentes y cablear de nuevo.
  • Se reduce el espacio dentro del cuadro de control, se reduce el número de componentes en el cuadro (contactores, relés, cableado, temporizadores, etc).
  • Se reducen los costes de mano de obra, tanto durante el montaje como sobre todo durante el mantenimiento, el cual se simplifica con cuadros más pequeños con muchos menos elementos.
  • Posibilidad de gobernar varias máquinas desde un único PLC.
  • Menor tiempo de puesta en funcionamiento, algo importante en las fábricas donde un fallo en una sola máquina interrumpe toda la producción.
  • Si el PLC queda pequeño para el proceso industrial se puede reutilizar en otras máquinas o sistemas de producción.

 

Entre los inconvenientes de los autómatas frente a los sistemas automáticos basados en cableados y relés están:

  • Necesidad de contar con técnicos cualificados en autómatas programables.
  • Coste del autómata.

En general el uso de autómatas programables son preferibles siempre que sea necesario automatizar sistemas complejos, los sistemas basados en cableado y relés pueden ser competitivos en precio a la hora de automatizar sistemas sencillos, principalmente debido al precio inicial del autómata.

Para tratar de hacer competitivos los autómatas programables en entornos de automatización sencillos se introdujeron los micro-autómatas, que poseen unas prestaciones un poco menores que los autómatas, pero presentan un precio mucho más competitivo y asequible para implementarlo en pequeños proyectos de automatización.


Evolución de los PLC desde 1968 hasta 2016
Los primeros PLC tenían la capacidad de trabajar con señales de entrada y salida, lógica interna de la bobina de relé / contacto, temporizadores y contadores. Los temporizadores y contadores utilizaron registros internos de tamaño de palabra, por lo que no pasó mucho tiempo antes de que se dispusiera de matemática simple de cuatro funciones. El PLC continuó evolucionando con la adición de señales one-shots, entrada y salida analógicas, temporizadores y contadores mejorados, matemática de coma flotante, secuenciadores de batería y funciones matemáticas. Tener la funcionalidad incorporada PID (Proporcional-Integral-Derivada) era una gran ventaja para los PLC que se usaban en la industria de procesos. La capacidad de utilizar nombres de etiqueta significativos en lugar de etiquetas no descriptivas ha permitido al usuario final definir más claramente su aplicación, y la capacidad de importar / exportar los nombres de etiquetas a otros dispositivos elimina los errores que resultan al ingresar información en cada dispositivo mediante mano.

A mediados de los 70 las tecnologías dominantes de los PLC eran máquinas de estado secuenciales y CPU’s basadas en desplazamiento de bit Los microprocesadores convencionales incorporaron la potencia necesaria para resolver de forma rápida y completa la lógica de los pequeños PLC's. Por cada modelo de microprocesador había un modelo de PLC basado en el mismo.

Las funciones de comunicación comenzaron a integrarse en los autómatas a partir del año 1973. El primer bus de comunicaciones fue el Modbus de Modicon. El PLC podía ahora establecer comunicación e intercambiar informaciones con otros PLC's.

La implantación de los sistemas de comunicación permitió aplicar herramientas de gestión de producción que se ejecutaban en miniordenadores enviando órdenes de producción a los autómatas de la planta. En las plantas se suele dedicar un autómata programable a ejecutar la función de gestión. Este autómata recibe las órdenes de producción y se encarga de comunicarlas a los autómatas programables dedicados a control. A su vez estos los autómatas de control envían el estado de la producción al autómata de gestión.

En los 80 se produjo un intento de estandarización de las comunicaciones con el protocolo MAP (Manufacturing Automation Protocol) de General Motors. También fue un tiempo en el que se redujeron las dimensiones del PLC y se pasó a programar con programación simbólica a través de ordenadores personales en vez de los clásicos terminales de programación. Hoy día el PLC más pequeño es del tamaño de un simple relé.

En la década de los noventa se ha producido una gradual reducción en el número de nuevos protocolos, y en la modernización de las capas físicas de los protocolos más populares que sobrevivieron a los 80.

Los principales fabricantes de Autómatas Programables son Modicon (Actualmente Schneider), Allen Bradley, GE, Omron, Siemens y Mitsubishi, en la tabla siguiente se muestran los hitos importantes desde 1968 hasta 2016;

Tener una PC que se comunique con un PLC proporcionó la capacidad no solo de programar, sino también de facilitar las pruebas y la resolución de problemas. Las comunicaciones comenzaron con el protocolo Modbus utilizando comunicaciones serie RS-232. La adición de varios protocolos de automatización que se comunican a través de RS-485, DeviceNet, Profibus y otras arquitecturas de comunicación en serie han seguido. El uso de comunicaciones seriales y los diversos protocolos de PLC también permitieron que los PLC se conecten en red con otros PLC, unidades de motor e interfaces de hombre a máquina (HMI). Más recientemente, EtherNet y protocolos como EtherNet / IP (para el protocolo industrial) han ganado una gran popularidad.


CURSOS DE FORMACIÓN RELACIONADA:

Si necesita recibir formación específica que le capacite en el control de instalaciones por medio de autómatas programables (PLC), tales como los que se utilizan habitualmente en la industria, le recomendamos el siguiente curso:


Funcionamiento y ventajas de los contactores
La importancia de interpretar correctamente esquemas eléctricos
Curso de interpretación de esquemas eléctricos
Curso de Interpretación de Instalaciones Eléctricas
Curso de Iniciación a Autómatas Programables


 
Publicado el 2018-05-05 15:27:09 por C. Rodríguez | Abrir
 
La necesidad de los análisis CAE y CFD en el Diseño de Motores 2T diesel
 
Con la aparición de la herramientas de diseño por ordenador (CAD 3D y 2D) y simulación por elementos finitos (CAE y CFD) se ha permitido un gran avance en el proceso de diseño de motores de dos tiempos diesel.

Todos parámetros que determinan la arquitectura de un motor pueden ser optimizados en las búsqueda de un más perfecto funcionamiento. La forma de comprobar y validar esta optimización es por medio de pruebas de funcionamiento. Antiguamente era necesario contruir prototipos de motores donde se analizaba su funcionamiento con las modificaciones implemementadas, lo cual tenía un elavadísimo coste que limitaba el llevar a cabo dichas mejoras. Actualmente contamos con las herramientas CAD, CAE y el CFD, que nos van a permitir optimizar el diseño de un motor antes de contruirlo, por medio del diseño virtual por ordenador y posteriormente las simulaciones, podremos predecir su comportamiento. El ahorro de costes en tiempo y dinero es incomparable, además de la evolución del diseño mucho más rápida.
El cálculo de esfuerzos y la resistencia de los materiales de los elementos que componen el motor son validados por medio de análisis FEM, o cálculo por elementos finitos a partir de los modelos 3D previamente realizados por ordenador, lo que se conoce como CAD 3D, es decir los componentes son creados virtualmente por ordenador a escala real, posteriormente todos estos elementos, ordinariamente compuestos por miles de elementos son ensamblados en conjuntos y subconjuntos, para crear un motor completo realizado por ordenador. Posteriormente se analizan por medio del CAE el comportamiento de estos elementos, se le aplican a las geometrías las propiedades de materiales con las que están fabricados, condiciones de contorno, restricciones y cargas, etc. Se realizan miles de simulaciones FEM para validar el comportamiento de cada uno de los elementos que componen el motor. A continuación se muestra el comportamiento del cigueñal de un motor sometido a las cargas que recibirá durante su funcionamiento real una vez contruido, el análisis muestra el nivel de tensiones que recibe el material en cada punto de su geometría.


Los motores de dos tiempos en general presentan un inconveniente que tiene una gran influencia en el desarrollo de su ciclo de funcionamiento, este problema viene motivado por el hecho de tener que realizar las cuatro fases del ciclo de funcionamiento (expansión, escape, admisión y compresión) en una sola vuelta del cigüeñal, por tanto los periodos necesarios para cada una de las fases son necesariamente más cortos que en un motor de cuatro tiempos. De todas ellas, las etapas más críticas son el escape-admisión, que es cuando se renueva la carga dentro del cilindro, es por ello que en el diseño del motor es sumamente importante que dichas etapas se lleven a cabo de forma óptima, para que el motor pueda desarrollar buenas prestaciones.

La figura siguiente muestra el ciclo abierto de un otor de dos tiempos, representado por medio de un diagrama presión-volumen. PMS es punto muerto superior. PMI es punto muerto inferior.


El proceso de desplazamiento de los gases quemados fuera del cilindro, y el llenado con carga de aire fresco, recibe el nombre de “barrido”, y su adecuada realización tiene una influencia decisiva no solo en el consumo de combustible, sino también en la potencia y en la contaminación. 

En la siguiente figura, se muestra el esquema de barrido y renovación de la carga del motor MAN S50MC. La circulación de aire (color rojo) y gases de escape (color azul).



Tal y como se puede observar en la figura anterior, el aire entrante se utiliza para expulsar fuera o barrer los gases de escape y mientras tanto llenar el espacio con aire fresco. Durante el proceso, una cantidad de aire externo es usado para limpiar el cilindro de gases de combustión. El aire entrante a presión dentro del cilindro se llama aire de barrido, y las lumbreras a través de los que entrase son llamadas lumbreras de admisión o de barrido. El barrido de los motores de dos tiempos se caracteriza por dos problemas típicos: las pérdidas por short-circuit y mixing. Short-circuit (cortocircuito) consiste en expulsar parte de la carga de aire fresco directamente al escape y Mixing (mezcla) consiste en que hay una pequeña cantidad de gases residuales que permanecen atrapados sin ser expulsados, los cuales se mezclan con parte de la carga de aire fresco. A fin de reducir estos problemas, el aire de barrido que entra dentro del cilindro a partir de las lumbreras de admisión debe estar perfectamente dirigido.

La siguiente figura, obtenida mediante un análisis CFD con OpenFOAM, muestra la distribución de velocidades del flujo en el interior del cilindro durante la renovación de la carga.


El motor MAN B&W 7S50MC cuenta con 7 cilindros en línea, con un diámetro de cilindro de 500 mm y una carrera de 1910 mm, suma una cilindrada total de 375 litros y desarrolla una potencia máxima de 9.988 kW a 127 rpm. Cada cilindro posee en su parte baja 16 lumbreras de admisión y en la culata posee una gran válvula de escape para permitir la exhaustación de los gases quemados.


Las características técnicas del motor MAN B&W 7S50MC son las siguientes:

Parámetro

Valor

Tipo de motor

Diesel, dos tiempos

Sistema de barrido

Uniflujo

Sobrealimentación

Turbocompresor

Cilindrada (cm3)

375.028

Diámetro (cm)

500

Carrera (cm)

1910

Presión media efectiva (bar)

19

Velocidad (rpm)

127

Número de cilindros

7

Potencia (kW)

9988


Por medio del análisis CFD proporciona información completa sobre el fenómeno en el interior del cilindro y la influencia de multitud de factores. En el campo de los motores marinos medianas y grandes, el análisis CFD es especialmente útil porque un prototipo experimental es extremadamente costoso y la construcción de un modelo a escala a veces no es suficientemente preciso.

La siguiente figura muestra las fracciones másicas de gases de escape (color azul) y aire (color rojo) para un recorrido desde 90º hasta 270º de ángulo de cigüeñal.




FORMACIÓN RECOMENDADA:
Para análisis CFD recomendamos el software gratuito OpenFOAM, que permite reproducir y simular el comportamientode un motor en lo referente a la mecánica de fluidos. Si desea recibir un curso de  formación para aprender a manejar el programa de CFD de uso libre  OpenFOAM, le recomendamos que realice el curso de Technical Courses



Para realizar anáisis FEM le recomendamos el software gratuito Code_Aster, que permite reproducir y simular el comportamientode un motor en lo referente a la resistencia estructural. Si desea recibir un curso de  formación para aprender a manejar el programa FEM Code_Aster, le recomendamos que realice el curso de Technical Courses


- Curso online de Code_Aster





FUENTES:
 
 
Publicado el 2016-12-29 10:26:38 por Carlos Rodríguez | Abrir
 
Diez automóviles que supusieron un paso adelante en eficiencia aerodinámica
 
La evolución del automóvil a lo largo de su historia ha estado marcado por la aparición de diseños que supusieron un paso adelante en eficiencia aerodinámica. Los ingenieros de diseño y aerodinámica han estado buscando la máxima eficacia en el avance del vehículo a través del aire, muchos han sido los prototipos experimentales realizados para ensayar diferentes diseños de mejora aerodinámica y finalmente algunos de ellos han dado paso a modelos de producción en serie para la venta al público. En este breve reportaje hemos querido recoger a diez modelos que han supuesto un hito importante de mejora aerodinámica respeto a sus cohetaneos en el momento de su salida al mercado, no están todos ya que sería un trabajo interminable, pero se ha hecho una selección entre los más representativos de la historia reciente, los cuales se muestran ordenados por coeficiente aerodinámico (Cx).

El Mercedes-Benz 190 (W201) contaba con buena aerodinamica en una carrocería diseñada por Bruno Sacco

La resistencia aerodinámica de un vehículo viene determinado casi totalmente por el SCx, que consiste en la multiplicación de dos factores, el factor de forma Cx y la superficie frontal S (m²). Siendo por tanto el coeficiente Cx la expresión de la resistencia que ofrece un cuerpo a moverse dentro de un fluido por razón de su forma. Al multiplicar el coeficiente de penetración Cx (tomado como número adimensional), por la superficie frontal expresada en m², queda un valor de resistencia aerodinámica SCx, expresado en también m². Este valor es el que determina la resistencia aerodinámica de un vehículo en movimiento.

El BMW 850i contaba con una preciosa carrocería con perfil en cuña y faros escamoteables en el frontal.


1- Volkswagen XL1 (0,19 Cx), 2014
El XL1 es un vehículo con una aerodinámica avanzadísima, de hecho ha sido diseñado con el objetivo de ser el vehículo producido en serie con el record en coeficiente aerodinámico y consumo de combustible, aunque para ello tenga que sacrificar otros aspectos como son la funcionalidad. Se trata de un vehículo híbrido de dos plazas, con un consumo homologado de 0.9 l/100 km. Posee una autonomía eléctrica de 50 km y una autonomía total de 499 km. Tiene un motor diésel TDI de dos cilindros de 830 cc, un motor eléctrico de 20 kW y una batería de iones de litio de 5,5 kWh. La velocidad máxima limitada eletrónicamente es de 160 km/h. De 0 a 100 km/h tarda 12,7 segundos. Largo: 3.888 mm / ancho: 1.665 mm / alto: 1.153 mm. Peso: 795 kg.

Volkswagen XL1 siendo probado en el tunel aerodinámico

Aerodinámica: Es un coche muy bajo. Dispone de lamas controladas eléctricamente en el sistema de admisión de aire, en los deflectores delante y detrás de las ruedas. La carrocería se estrecha hacia la parte trasera. Los asientos no se encuentran alienados para reducir la anchura del coche. Así se consigue un área frontal menor: 1,50 m2. Las ruedas traseras están completamente cubiertas para producir un flujo de aire uniforme y menos turbulencias. Los retrovisores exteriores están reemplazados por pequeñas cámaras en las puertas que transmiten lo que ocurre a unas pantallas interiores. El flujo de aire es más suave y no presenta las turbulencias producidas por los retrovisores convencionales.
Volkswagen XL1 mostrando la suavidad de sus linea aerodinámica


2- Mercedes Benz CLA (0,22 Cx), 2013.
El Mercedes CLA es en la actualidad uno de los coches más aerodinámicos del mundo. La joya de la corona es el Mercedes CLA 180 BlueEFFICIENCY Edition con un Cx de 0,22 y con un valor de resistencia SCx de sólo 0,49 m². Los motores del CLA van de 122 hp a 360hp, existiendo versiones diesel y gasolina. En el exterior destacan sus proporciones deportivas y su diseño dinámico y contundente. El CLA mide 4.630 mm de longitud, 1.777 mm de anchura y 1.437 mm de altura.
Mercedes Benz CLA muestra una erodinámica de record, solo CX: 0,22.

Aerodinámica: La silueta destaca por contar con un techo de línea tendida descendente hacia atrás y el contorno redondeado de la luneta trasera que otorgan al CLA un típico carácter de coupé. Su carrocería destaca por tener gran cantidad de superficies cóncavas y convexas como ocurría con el Concept Style Coupé. El radiador solo se abre cuando el motor necesita enfriarse. El flujo de aire debajo del vehículo ha sido optimizado con un laborioso artesonado de paneles debajo de la carrocería más un revestimiento adicional en la zona media del eje trasero con un silenciador aerodinámicamente optimizado seguido por un difusor. Por otra parte, con ruedas especiales y alerones dentados en las ruedas se has conseguido reducir apreciablemente el flujo de aire alrededor de los neumáticos.
Mercedes Benz CLA mostrando los detalles aerodinámicos.


3- Audi A2 (0,24 Cx), 2001.
El Audi A2 es el resultado cuando un equipo de ingenieros deciden crear un nuevo vehículo basándose en parámetros metemáticos y sin la intervención de los estilistas y diseñadores, es decir dejando de lado el aspecto estético del nuevo diseño. El A2 se comercializó entre los años 1999 y 2005, es decir durante 6 años, y supso un fracaso comercial. Es un cuatro plazas con motor delantero y tracción delantera. En menos de 4 metros Audi había logrado condensar cuatro plazas (opcional 5), un maletero de 390 litros. El modelo con motor de gasolina, 1,6 litros de cuatro válvulas por cilindro, con inyección directa de combustible, desarrollaba 110 CV que le permitían una velocidad de 202km/h. Las dimensiones exteriores son; largo: 3.825 mm / ancho: 1.675 mm / alto: 1.555 mm, peso 1.070kg. Su carrocería y chasis están construidos en aluminio, lo que lo hace mucho más liviano de lo habitual.
Audi A2 mostrando su perfil Kammback.

Aerodinámica: Su diseño aerodinámico se estudió siguiendo los principios de las tesis de Kamm (el denominado diseño Kammback), en el que la carrocería se prolonga en forma de lágrima hasta la zaga con una ligera caída del techo que termina en una ruptura hacia una importante caída vertical. Es el diseño que hoy en día emplean algunos híbridos como por ejemplo el Toyota Prius.
El Audi A2 fue un vehículo adelantado a su tiempo.


4- Tesla Model S (0,24 Cx), 2012.
El Tesla Model S Tesla model S es el vehículo eléctrico más avanzado del mundo. Se trata de un sedán eléctrico de gama alta actualmente en producción desde el año 2012. El modelo base (60 kWh) tiene una autonomía de 370 km y una aceleración de 0 a 100 km/h de 6.2 segundos. Potencia 302 hp (225 Kw). Par motor: 430 Nm de 0-5000 rpm, velocidad máxima: 190 km/h. Las dimensiones exteriores son; largo: 4.976 mm / ancho: 1.963 mm / alto: 1.435 mm, peso 2.108 kg.
Tesla Model S mostrando su puereza de lineas en vista lateral.

Aerodinámica: Las formas de la carrocería son muy similares a las del Jaguar XF, pero mientras este tiene un Cx de 0,29, el Tesla S lo rebaja hasta 0,24. La aerodinámica ha sido estudiada hasta los últimos detalles, por ejemplo los tiradores de las puertas están “incrustados” para evitar perturbar el flujo del aire. También al carecer de un motor convencional de combustión interna no necesita tomas de aire en el frontal para refrigerar el radiador, lo cual mejora su penetración en el aire. Los bajos, como es de esperar, están completamente carenados para optimizar el flujo de aire.
El Tesla Model S es el vehiculo eléctrico más avanzado del mundo.


5- Mercedes Clase C (0,24 Cx), 2014.
El nuevo Mercedes Clase C, código interno W205, apareció en el año 2014 y supuso un paso adelante en aerodinámica respecto a la versión anterior. Las formas de la carrocería recuerdan a la de su hermano mayor el Mercedes Clase S (W222), con un capó largo, un habitáculo en posición atrasada y los voladizos cortos que recuerdan a las proporciones clásicas de las grandes berlinas de Mercedes. El W205 ha sido el primero en incorporar la nueva plataforma MRA (Modular Rear-wheel drive Architecture).
El Mercedes Clase C cuenta con una preciosa linea la cual no está reñida con un buen CX de solo 0,24.

La carrocería del Clase C de 2014 mide 4,69 metros de longitud, 1,81 m de anchura y 1,44 m de altura. La distancia entre ejes es 2,84 metros. El volumen del maletero es 480 litros. El peso total el vehículo disminuye en unos 100 kilogramos gracias a la técnica de construcción ligera la carrocería de aluminio. El consumo también disminuye hasta un 20%, conservando su nivel de prestaciones. Al mismo tiempo disminuye la altura del centro de gravedad, lo que le confiere propiedades de conducción sensiblemente más ágiles y deportivas. La gama de motores es muy amplia, van desde los 156cv a los 510 cv. Por ejemplo la versión C 180 con motor de gasolina y 156 cv alcanza una velocidad de 225 km/h fruto de su bien estudiada aerodinámica.
La berlina Mercedes Clase C cuenta con un buen CX de solo 0,24.

Aerodinámica: Los Mercedes destacan tradicionalmente por ser vehículos muy estudiados aerodinámicamente, aunque sus proporciones sean similares a otros vehículos convencionales, sus cifras de penetración aerodinámica suelen ser muy buenas. En este vehículo destacan las líneas fluidas, con ángulos y perfiles redondeados para facilitar el flujo laminar del aire. Diversos detalles contribuyen a optimizar el rendimiento aerodinámico, destacan el frontal con un cuidado diseño aerodinámico, además el radiador solo se abre cuando el motor necesita enfriarse, posteriormente un morro relativamente largo y a continuación un parabrisas muy inclinado, con los limpiaparabrisas perfectamente escondidos bajo la tapa del motor. Los espejos retrovisores también cuentan ahora con un diseño más afilado. El techo empieza a descender pronto y continua con una luneta trasera bastante tendida, finalmente está la tapa del maletero muy corta e incorpora al final del mismo una ligera elevación que conforma un pequeño alerón trasero.
Vista por la aleta trasera del la berlina Mercedes Clase C serie W205.


6- Opel Calibra (0,26 Cx), 1989.
El Opel Calibra es un coupé de dos puertas basado en la plataforma del Opel Vectra (1ª generacion) y producido entre los años 1989 y 1997. El Calibra es un 2+2 plazas con motor delantero transversal, disponible con tracción delantera o a las cuatro ruedas. Su carrocería coupé tiene un coeficiente aerodinámico de solo 0,26 para el modelo 2.0 de 115cv. Velocidad máxima de 215 km/h. Las dimensiones son; largo: 4.490 mm / ancho: 1.690 mm / alto: 1.320 mm.
El Opel Calibra con su hermosa carrocería firmada por Erhard Schnell.

Aerodinámica: Su hermosa carrocería era obra de Erhard Schnell. Su cuidado y bello perfil, en el que destacaban sus originales faros elipsoidales de muy poca altura que le permitían tener un frontal muy afilado, todas las zonas del coches etaban optimizadas aerodinámicamente, con sus bordes suavizados, gracias a su buen diseño consiguió un CX de solo 0,26, que era entonces el más bajo del mundo para un automóvil de serie de cuatro plazas.
El Opel Calibra contaba con una carrocería con CX de record, solo 0,26 en 1989.


7-Toyota Prius (0,26 Cx), 2004
El Toyota Prius es un automóvil híbrido gasolina-eléctrico del segmento C. La potencia máxima es de 82kW, el motor de gasolina de 1.5 litros desarrolla solo 57kW, la velocidad máxima es de 170km/h. Las dimensiones exteriores son; largo: 4.450 mm / ancho: 1.725 mm / alto: 1.490 mm, peso 1.326 kg.
El Toyota Prius de 2004, con su carrocería siguiendo las tesis del Dr. Kamm.

Aerodinámica: Lo que más llama la atención es su estilo orientado a alcanzar un mejor rendimiento aerodinámico, prueba de ello es su bajísimo coeficiente de penetración de solo 0,26. Sigue los principios de las tesis de Kamm (el denominado diseño Kammback). El primer cuerpo es corto y se une a un parabrisas muy inclinado cuya línea se integra a un techo perfilado como un cupé.


8-Alpine GTA (0,28 Cx), 1984
El AlpineGTA es un coupé 2+2 producido desde 1984 a 1991, siendo posteriormente sustituido por el Alpine A610. Contaba con una penetrante línea aerodinámica con  coeficiente aerodinámico (CX)  de solo 0,28, una de las más bajas en su momento. El motor iba situado detrás, era el conocido PRV, un motor V6 de 2.5 litros turboalimentado procedente del Renault 25. Contaba además con inyección electrónica y un turbo que trabajaba a 0,65 bares de presión. Todo ello hacía que el motor desarrollara una potencia de 200 CV a 5.750 rpm y un par de 285 Nm a 2.500 rpm. Con este motor el Alpine GTA aceleraba de 0-100 km/h en 7 segundos y su velocidad máxima era de 250km/h.
El Alpine GTA aunaba deportividad y agresividad en una preciosa linea aerodinámica, con CX: 0,28.

Aerodinámica: En líneas generales destaca su forma de cuña de la carrocería, con su baja altura configuraba una línea penetrante y muy afilada, en el frontal destacaban los faros carenados bajo un plástico transparente, solución heredada del anterior A310.

El Alpine GTA contaba con un morro muy penetrante con los faros carenados bajo un plástico transparente.


9-Citroën XM (0,28 Cx), 1989
El Citroën XM es un automóvil de turismo del segmento E producido por el fabricante francés Citroën entre 1989 y 2000. Citroën vendió 330.000 unidades de este modelo durante los 10 años en que fue producido. El XM fue elegido en 1990 como el Coche del Año en Europa. El anguloso pero esbelto y bien proporcionado diseño de Bertone, es el desarrollo del diseño de Marcello Gandini para el BX. Su aspecto se inspiró en gran medida en el Citroën SM de los años 1970, el cual tenía una estética similar, aunque más rica en líneas rectas. Las dimensiones exteriores son; largo: 4.709 mm / ancho: 1.794 mm / alto: 1.392 mm / batalla: 2.850mm.
El Citroen XM contaba con una linea en cuña muy definida, y buena aerodinámica, CX: 0,28.

Aerodinámica: Contaba con una línea en cuña muy marcada, con un morro largo e inclinado que terminaba en un frontal muy afilado, para ello incorporaba unos faros mucho más bajos de lo normal, diseñados especialmente por Valeo para este modelo, y que permitían el diseño muy afilado de su morro. Esta característica además de las típicas soluciones de mejora aerodinámica le daban una ventaja importante en el coeficiente de penetracción, lo cual permitía al XM un coeficiente CX de solo 0,28 mientras que sus rivales como el BMW 520 tenía 0,30 y el Lancia 0,32.
El Citroen XM contaba con un frontal muy afilado gracias a los faros Valeo de altura reducida.


10-Renault 25 TS (0,28 Cx), 1984
El Renault 25 supuso un importante impulso del fabricante francés dentro del segmento E, apareció en el año 1984 y se mantuvo en producción hasta 1992. El Renault 25 fue un gran paso adelante en casi todos los aspectos del Renault 20/30, modelo al cual reemplazó. Su formato de cinco puertas fue firmado por los diseñadores Gaston Juchet y Robert Porrón (de Citroen y famosos por el SM), configuraban un estilo nada convencional con la ventana trasera envolvente que era su característica más famosa) tenía por objeto dar al coche un look moderno y fuera de lo convencional.
Renault 25 después de sufrir el profundo rediseño que permitió ampliar su vida comercial.

El 25 fue uno de los primeros coches diseñados bajo el principio de eficacia aerodinámica, concretamente el modelo TS mantuvo brevemente el título de "coche más aerodinámico del mundo de producción en serie" con un coeficiente de 0,28.
 
El Renault 25 mostrando su diseño original cuando salió al mercado en el año 1984.

Todos los modelos Renault 25 fueron de tracción delantera, con motores de cuatro cilindros (2 litros carburado, de inyección de 2,2 litros o 2,1 litros diésel) y de seis cilindros (2,9 litros y 2,4 litros de inyección turbo) montados longitudinalmente por delante del eje delantero. Las prestaciones del 2.2 GTX con 123 CV eran de 205 Km/h.  Las dimensiones exteriores son; largo: 4.623 mm / ancho: 1772 mm/ alto: 1405 mm / batalla: 2723 mm.
El Renault 25 V6 Turbo era una máquina muy seria, al igual que el mítico reactor Concorde que se ve detrás.


Aerodinámica: Aunque a simple vista cualquier profano en la materia no consideraría al R25 un vehículo especialmente aerodinámico, los resultados de las mediciones daban unas cifras espectaculares, esto no sería posible sin un profundo estudio en el túnel del viento. Para llegar a esta cifra de 0,28, que todavía hoy en día sería una cifra muy buena, se recurrieron a todos los trucos habituales, como son los cristales enrasados con la carrocería, eliminación de los vierteaguas, faldón delantero y discreto alerón posterior, carenado inferior de los bajos y protecciones ante las ruedas posteriores. Resulta sorprendente que no se recurriera a esconder los limpiaparabrisas bajo el resalte posterior del capot del motor, solución que en este vehículo se desestimó y que podría ayudarle todavía más en la mejora de su eficiencia aerodinámica. El resultado tan bueno obtenido por este vehículo debe tener su origen, principalmente, en la inversión en horas de trabajo en el tunel del viento, permitiendo detectar y posteriormente solucionar las zonas críticas, hasta conseguir una carrocería que se aproxima a la perfección en terminos de eficacia aerodinámica.
El Renault 25 TS marcó un record en aerodinámica con un CX de 0,28 en 1984


Estudio de la Aerodinámica:
Los diseñadores de vehículos emplean los ensayos en el túnel de viento y el análisis CFD (Mecánica de fluidos computacional) para conocer el comportamiento aerodinámico de un nuevo vehículo.

Túnel de viento y CFD no son más que dos herramientas que se utilizan de forma simultánea para avanzar más rápidamente y obtener mejores resultados en el desarrollo aerodinámico. En el siguiente link pueden conocer más sobre estas técnicas: ESTUDIO DE LA AERODINÁMICA DE UN VEHÍCULO


FORMACIÓN: 
Para análisis CFD recomendamos el software gratuito OpenFOAM, que permite reproducir y simular el comportamiento aerodinámico de un vehículo. Si desea recibir un curso de  formación para aprender a manejar el programa de CFD de uso libre  OpenFOAM, le recomendamos que realice el curso de Technical Courses:

- Curso online CFD con OpenFOAM
 

Fuentes: Wikipedia, Revistas especializadas (Motor 16, Autopista, Automovil), Información del fabricante (Mercedes Benz, Opel, Citroen, Audi, Renault y Tesla).
 
Publicado el 2017-10-21 16:13:56 por Carlos Rodríguez | Abrir
 
Code_Aster, software para análisis CAE por elementos finitos
 

El software Code_Aster está orientado al análisis de elementos finitos y simulación numérica en mecánica estructural y multifísica.


Caracterítiscas del Code_Aster:

- Tipo de FEM: Linear & non-linear static/dynamic, thermal & fluid analysis
- Tipo de Licencia: GPL
- Desarrollador: Electricité de France (EDF)
- Sistema operativo: Linux, Solaris and IRIX 64 bits
- Descarga: Code_Aster
 

Fue desarrollado por la empresa francesa Électricité de France (EDF), para el estudio y mantenimiento de plantas y redes eléctricas. Fue liberado bajo la GNU General Public License en octubre de 2001. La mayoría de la documentación disponible se encuentra en francés.

Code_Aster es el solver o motor de procesamiento, por lo que no incluye el preprocesamiento y posprocesamiento, es decir el mallado del objeto y presentación de las soluciónes del estudio.

Su aplicación abarca múltiples disciplinas: análisis tridimensinal mecánico y térmico principalmente, hidrodinámica, metalurgia, hidratación, secado... ya sean condiciones estacionarias o transitorias, y tanto en procesos lineales como no lineales. Además, posee herramientas específicas para fatiga, deformación, fractura, contacto, geotecnia, materiales porosos, etc. Además, la combinación de estas características con los programas específicos de preprocesado y posprocesado, como por ejemplo el SALOME-MECA, le permiten disponer de una funcionalidad completa para el desarrollo de estudios multidisciplinares.

Code_Aster contiene 1.500.000 líneas de código fuente, la mayor parte en Fortran y Python, y está siendo constantemente desarrollado, actualizado y mejorado con nuevos modelos. Los estandards de calidad requeridos por la industria nuclear han permitido obtener un software que alcanza los más altos niveles de funcionalidad y precisión en los resultados numéricos, los cuales han sido validados por medio de comparaciones independientes con resultados analíticos o experimentales, además del uso de puntos de referencia hacia otros códigos. El software se proporciona con cerca de 2.000 test, que se dedican a la calificación elemental y son útiles como ejemplos. La documentación de Code_Aster incluye más de 14.000 páginas y abarca los manuales de usuario, manuales de teoría que incluyen la compilación de los conocimientos técnicos de EDF en mecánica, problemas de ejemplo y manuales de verificación. La gran mayoría de la documentación está todavía solamente en francés.


CURSOS DE FORMACIÓN RELACIONADOS:

Si desea recibir cursos de  formación relacionados con esta temática, le recomendamos que realice los cursos de Technical Courses:
http://www.technicalcourses.net

Technical Courses está especializado en la impartición de actividades formativas en todo el mundo, destinados a cubrir la necesidades de cualificación de personal técnico, nuestros cursos se encuentran estrechamente ligados a las tendencias del mundo laboral y las necesidades formativas de las empresas.

- CURSO DE CODE_ASTER
 
Publicado el 2016-04-14 12:56:15 por | Abrir
 
Entradas 1 a 5 de 62 Siguiente >>

 

norplan
2018 © NORPLAN ENGINEERING S.L. - C/ Ramón Cabanillas nº 13, 15570, Narón, A Coruña, España (Spain)
Tlf: +34 600 826 122 - info@technicalcourses.net