Este sitio web utiliza cookies para mejorar la experiencia de usuario y obtener datos estadísticos. Si continua navegando se considera que acepta nuestra política de cookies. |
Análisis CFD del motor diesel de pistones opuestos Fairbanks Morse 38D8-1/8. |
Los motores de émbolos opuestos se comenzaron a
desarrollar desde principios del siglo XX con el fin de mejorar el rendimiento
de los motores de dos tiempos. Han destacado fabricantes como Oechelhaeuser, Junkers, Beardmore, etc. Respecto al
ámbito naval, motores de las marcas Fairbanks-Morse, Napier Deltic, Doxford,
etc han estado presentes en cientos de barcos a lo largo de la historia.
Sus principales ventajas son el
empleo de barrido uniflujo y diagrama de distribución asimétrico, lo cual
mejora considerablemente la eficacia del barrido y el rendimiento debido a la
optimización de los tiempos de apertura y cierre de las lumbreras. Estas
características de los motores de émbolos opuestos hacen que alcancen una
eficiencia en consumos de combustible equiparable a la obtenida por los mejores
motores diesel de cuatro tiempos, pero con la ventaja de menor complejidad
mecánica y menor peso
. Fig.3. Sección del motor Fairbanks-Morse 38D8-1/8 [1].
Los motores de émbolos opuestos
se caracterizan por tener dos pistones y una cámara de combustión en cada
cilindro, tal y como se indica en la Fig. 3. Los pistones se colocan en
posiciones opuestas, es decir, cabeza con cabeza, y el espacio de combustión es
el que queda entre ambos. Cuando tiene lugar la combustión, los gases actúan en
ambos pistones separándolos, de ahí el nombre de “émbolos opuestos”.
Los
cilindros de estos motores no tienen válvulas, sino lumbreras localizadas en
los extremos de los cilindros (lumbreras de escape en la parte inferior del
cilindro y lumbreras de admisión en la parte superior). Estas lumbreras son
abiertas y cerradas mediante el movimiento de los pistones. El motor que hemos estudiado es el Fairbanks-Morse 38D8-1/8 es uno de los motores de émbolos
opuestos con más éxito de la historia. Fue desarrollado a mediados de los años 30
del siglo XX, entrando en producción regular en 1937. Se empleó en prácticamente
todas las clases de submarinos norteamericanos durante la II Guerra Mundial,
tales como los de la clase Tambor (1939-1941), Gato (1940-1944), Balao
(1942-1946), Tech (1944-1951) y el más reciente de la clase Tang (1949-1952).
Posteriormente, el 38D8-1/8 también fue utilizado como generador auxiliar en
todas las clases de submarinos nucleares hasta los submarinos de la clase
Virginia. Fig.6. USS Ponpano, submarino de la clase Porpoise que originalmente incorporaba los nefastos Hooven, Owens, Rentschler, y posteriormente fueron remotorizados con los FM 38D8-1/8.
Además de su aplicación inicial
en buques de guerra, el 38D8-1/8 se empleó posteriormente en multitud de buques
civiles tales como remolcadores, pesqueros, grandes yates y barcos de pequeño y
mediano porte en general. En menor medida, otras aplicaciones fueron la
propulsión ferroviaria y la producción de energía eléctrica. Su éxito se ha
consolidado después de muchas décadas de fabricación y miles de unidades
producidas. Increíblemente, más de 80 años después desde la aparición de los
primeros prototipos, el 38D8-1/8 todavía continúa en producción en la actualidad
como generador diesel dual (gas natural-gasoil).
El sistema de barrido uniflujo es,
sin lugar a dudas, el mejor sistema para un motor de dos tiempos, permitiendo
utilizar relaciones carrera/diámetro muy elevadas sin problemas para un barrido
eficiente (el 3808-1/8 tiene una relación carrera/diámetro de 2,45). En este
sistema, el aire de barrido entra por las lumbreras de admisión y se desplaza
en línea recta sin cambios de dirección, empujando como si fuera un pistón a los gases quemados
fuera del cilindro a través de las lumbreras de escape, y quedando el cilindro
lleno con carga de aire fresco. A pesar de que la máxima eficacia nunca se
alcanza, se pueden alcanzar valores muy cercanos al óptimo.
La secuencia del barrido y renovación
de la carga es la siguiente. Una el vez completada la inyección y realizada la
combustión, los pistones se separan en su carrera de trabajo. El pistón
inferior (que tiene un er adelanto de 12°) aprovecha la mayor parte de la
energía de los gases y, en su desplazamiento hacia abajo, descubre las
lumbreras de escape. Esto provoca una caída brusca de la presión residual
dentro del cilindro. A continuación, el pistón superior descubre las lumbreras
de admisión. Cada cilindro posee 10 lumbreras de escape y 16 lumbreras de
admisión. Estas últimas tienen una orientación en sentido randial para forzar
al flujo de aire a girar dentro del cilindro en forma de es remolino (fenómeno
conocido como swirling). A pesar de la velocidad axial que posee el aire de
barrido cuando entra en el cilindro, a medida que la masa de aire fresco va descendiendo
en dirección al escape, se va disipando algo su velocidad y se va concentrando
cada vez más hacia el centro del cilindro, pudiendo quedar pequeñas porciones
de gases residuales en las inmediaciones de las paredes, haciendo que el
barrido nunca sea perfecto. Sin embargo, se han hecho muchos esfuerzos para
reducir en lo posible este fenómeno. En motores modernos se ha minimizado
gracias a los enormes caudales de aire de barrido que producen las
turbosoplantes modernas, y que en estos motores con compresor mecánicos no
se podrían utilizar debido a la elevada potencia que consumiría el
compresor.
Para
comprobar el buen funcionamiento de este motor se ha simulado el
proceso de barrido mediante CFD con el Software OpenFoam , uno de los
mejores programas CFD del mundo para simulación numérica. Los resultados
se pueden ver en el siguiente vídeo, que
representa el rojo aire y en azul gases frescos. En el instante inicial
de la
simulación el cilindro está lleno de gases (color azul), y al abrirse
las
lumbreras de admisión (situadas en la parte superior del cilindro) entra
aire
(color rojo) en el cilindro que expulsa los gases al exterior por medio
de las
lumbreras de escape.
La extremada rapidez en que se efectua el ciclo hace que sea
prácticamente imposible, (manteniendo una precisión razonable), realizar
los cálculos por otros métodos. Un ciclo completo se realiza en menos
de 0,083 segundos, lo cual da lugar a velocidades de los gases
desplazados realmente elavadas.
Durante el análisis se puede cuantificar con precisión la cantidad de flujo de gases que pasa por las lumbreras de admisión y escape, diferenciando además las cantidades de cada especie, lo cual permite calcular, entre otras cosas, la eficiencia de barrido, que en esta simulación nos da un resultado de 89,2%. Este valor concuerda satisfactoriamente con el 90% calculado por Schweitzer para este mismo motor y en las mismas condiciones de funcionamiento. FORMACIÓN:
Para análisis CFD recomendamos el
software gratuito OpenFOAM, que permite reproducir y simular el funcionamiento del motor en todo lo referente al comportamiento de gases y fluidos.
Por medio del curso de Technical Courses en idioma español o en inglés, se puede introducir en el manejo de este potente Software de CFD.
REFERENCIAS:
[1]
Farirbanks-Morse & Co. Fairbanks-Morse model
38D8-1/8 diesel marine. Engine service manual, 1967.
[2]
www.fairbanksmorse.com
[7] Grupo de Innovaciones Mariñas de la Universidad de La Coruña.
[3] OpenFOAM (2008), Version 1.5 User Guide.
[5] Revista Ingeniería Naval
[6] USS Bang, wikipedia |
Publicado el 2014-05-06 10:22:27 por C. Rodriguez & I. Lamas |
Twittear |