Este sitio web utiliza cookies para mejorar la experiencia de usuario y obtener datos estadísticos. Si continua navegando se considera que acepta nuestra política de cookies. Aceptar
Análisis CFD del motor diesel de pistones opuestos Fairbanks Morse 38D8-1/8.
 
Los  motores de émbolos opuestos se comenzaron a desarrollar desde principios del siglo XX con el fin de mejorar el rendimiento de los motores de dos tiempos. Han destacado fabricantes como Oechelhaeuser, Junkers, Beardmore, etc. Respecto al ámbito naval, motores de las marcas Fairbanks-Morse, Napier Deltic, Doxford, etc han estado presentes en cientos de barcos a lo largo de la historia.


Fig.1. Sección del motor de émbolos opuestos Fairbanks-Morse 38D8-1/8 [1]

Sus principales ventajas son el empleo de barrido uniflujo y diagrama de distribución asimétrico, lo cual mejora considerablemente la eficacia del barrido y el rendimiento debido a la optimización de los tiempos de apertura y cierre de las lumbreras. Estas características de los motores de émbolos opuestos hacen que alcancen una eficiencia en consumos de combustible equiparable a la obtenida por los mejores motores diesel de cuatro tiempos, pero con la ventaja de menor complejidad mecánica y menor peso .


Fig.2. Motor de seis cilindros Fairbanks-Morse 38D8-1/8 [1].



Fig.3. Sección del motor Fairbanks-Morse 38D8-1/8 [1].

Los motores de émbolos opuestos se caracterizan por tener dos pistones y una cámara de combustión en cada cilindro, tal y como se indica en la Fig. 3. Los pistones se colocan en posiciones opuestas, es decir, cabeza con cabeza, y el espacio de combustión es el que queda entre ambos. Cuando tiene lugar la combustión, los gases actúan en ambos pistones separándolos, de ahí el nombre de “émbolos opuestos”.


Fig.4. Cilindros de motor de émbolos opuestos. Fairbanks-Morse 38D8-1/8 [1]

Los cilindros de estos motores no tienen válvulas, sino lumbreras localizadas en los extremos de los cilindros (lumbreras de escape en la parte inferior del cilindro y lumbreras de admisión en la parte superior). Estas lumbreras son abiertas y cerradas mediante el movimiento de los pistones.


Fig.5. Sala de máquinas de un submarino de la clase Balao, equipada con 2 motores FM 38D8-1/8.

El motor que hemos estudiado es el Fairbanks-Morse 38D8-1/8 es uno de los motores de émbolos opuestos con más éxito de la historia. Fue desarrollado a mediados de los años 30 del siglo XX, entrando en producción regular en 1937. Se empleó en prácticamente todas las clases de submarinos norteamericanos durante la II Guerra Mundial, tales como los de la clase Tambor (1939-1941), Gato (1940-1944), Balao (1942-1946), Tech (1944-1951) y el más reciente de la clase Tang (1949-1952). Posteriormente, el 38D8-1/8 también fue utilizado como generador auxiliar en todas las clases de submarinos nucleares hasta los submarinos de la clase Virginia.


Fig.6. USS Ponpano, submarino de la clase  Porpoise que originalmente incorporaba los nefastos Hooven, Owens, Rentschler, y posteriormente fueron remotorizados con los FM 38D8-1/8.


Fig.7. Submarino USS Bang de la clase Balao transformado a Guppy IIA, que posteriormente fue vendido a España tomando el nombre de Cosme Garcia (S34), fue desguazado en 1983. [6].


Fig.8. Submarino español S35 "NARCISO MONTURIOL", iba propulsado por cuatro motores Fairbanks-Morse 38D8-1/8.

Además de su aplicación inicial en buques de guerra, el 38D8-1/8 se empleó posteriormente en multitud de buques civiles tales como remolcadores, pesqueros, grandes yates y barcos de pequeño y mediano porte en general. En menor medida, otras aplicaciones fueron la propulsión ferroviaria y la producción de energía eléctrica. Su éxito se ha consolidado después de muchas décadas de fabricación y miles de unidades producidas. Increíblemente, más de 80 años después desde la aparición de los primeros prototipos, el 38D8-1/8 todavía continúa en producción en la actualidad como generador diesel dual (gas natural-gasoil).


Fig.9. Motor FM 38D8-1/8 moderno equipado con turbocompresor y quemando GNL.  [2].


El sistema de barrido uniflujo es, sin lugar a dudas, el mejor sistema para un motor de dos tiempos, permitiendo utilizar relaciones carrera/diámetro muy elevadas sin problemas para un barrido eficiente (el 3808-1/8 tiene una relación carrera/diámetro de 2,45). En este sistema, el aire de barrido entra por las lumbreras de admisión y se desplaza en línea recta sin cambios de dirección, empujando como si fuera un pistón a los gases quemados fuera del cilindro a través de las lumbreras de escape, y quedando el cilindro lleno con carga de aire fresco. A pesar de que la máxima eficacia nunca se alcanza, se pueden alcanzar valores muy cercanos al óptimo.


Fig.10. Secuencia del ciclo de un motor de embolos opuestos

La secuencia del barrido y renovación de la carga es la siguiente. Una el vez completada la inyección y realizada la combustión, los pistones se separan en su carrera de trabajo. El pistón inferior (que tiene un er adelanto de 12°) aprovecha la mayor parte de la energía de los gases y, en su desplazamiento hacia abajo, descubre las lumbreras de escape. Esto provoca una caída brusca de la presión residual dentro del cilindro. A continuación, el pistón superior descubre las lumbreras de admisión. Cada cilindro posee 10 lumbreras de escape y 16 lumbreras de admisión. Estas últimas tienen una orientación en sentido randial para forzar al flujo de aire a girar dentro del cilindro en forma de es remolino (fenómeno conocido como swirling). A pesar de la velocidad axial que posee el aire de barrido cuando entra en el cilindro, a medida que la masa de aire fresco va descendiendo en dirección al escape, se va disipando algo su velocidad y se va concentrando cada vez más hacia el centro del cilindro, pudiendo quedar pequeñas porciones de gases residuales en las inmediaciones de las paredes, haciendo que el barrido nunca sea perfecto. Sin embargo, se han hecho muchos esfuerzos para reducir en lo posible este fenómeno. En motores modernos se ha minimizado gracias a los enormes caudales de aire de barrido que producen las turbosoplantes modernas, y que en estos motores con compresor mecánicos no se podrían utilizar debido a la elevada potencia que consumiría el compresor.


Fig.11. Modelo 3D del cilindro del Fairbanks-Morse 38D8-1/8 [4].

Para comprobar el buen funcionamiento de este motor se ha simulado el proceso de barrido mediante CFD con el Software OpenFoam , uno de los mejores programas CFD del mundo para simulación numérica. Los resultados se pueden ver en el siguiente vídeo, que representa el rojo aire y en azul gases frescos. En el instante inicial de la simulación el cilindro está lleno de gases (color azul), y al abrirse las lumbreras de admisión (situadas en la parte superior del cilindro) entra aire (color rojo) en el cilindro que expulsa los gases al exterior por medio de las lumbreras de escape.




La extremada rapidez en que se efectua el ciclo hace que sea prácticamente imposible, (manteniendo una precisión razonable), realizar los cálculos por otros métodos. Un ciclo completo se realiza en menos de 0,083 segundos, lo cual da lugar a velocidades de los gases desplazados realmente elavadas.

Durante el análisis se puede cuantificar con precisión la cantidad de flujo de gases que pasa por las lumbreras de admisión y escape, diferenciando además las cantidades de cada especie, lo cual permite calcular, entre otras cosas, la eficiencia de barrido, que en esta simulación nos da un resultado de 89,2%. Este valor concuerda satisfactoriamente con el 90% calculado por Schweitzer para este mismo motor y en las mismas condiciones de funcionamiento.


FORMACIÓN:

Para análisis CFD recomendamos el software gratuito OpenFOAM, que permite reproducir y simular el funcionamiento del motor en todo lo referente al comportamiento de gases y fluidos.

Por medio del curso de Technical Courses en idioma español o en inglés, se puede introducir en el manejo de este potente Software de CFD.


imagencurso Curso de CFD con OpenFOAM


REFERENCIAS:

[1] Farirbanks-Morse & Co. Fairbanks-Morse model 38D8-1/8 diesel marine. Engine service manual, 1967.

[2] www.fairbanksmorse.com

[3] OpenFOAM (2008), Version 1.5 User Guide.


[5] Revista Ingeniería Naval

[6] USS Bang, wikipedia

[7] Grupo de Innovaciones Mariñas de la Universidad de La Coruña.

 
Publicado el 2014-05-06 10:22:27 por C. Rodriguez & I. Lamas
   
 

norplan
2024 © NORPLAN ENGINEERING S.L. - C/ Ramón Cabanillas nº 13, 15570, Narón, A Coruña, España (Spain)
Tlf: +34 600 826 122 - info@technicalcourses.net