Este sitio web utiliza cookies para mejorar la experiencia de usuario y obtener datos estadísticos. Si continua navegando se considera que acepta nuestra política de cookies. Aceptar
Análisis CFD del periodo de barrido durante el solape de válvulas del motor diesel Wärtsilä 46
 

El motor Wärtsilä 46 es un motor diesel de cuatro tiempos diseñado para aplicaciones marinas, bien como motor principal o como generador eléctrico. Cuenta con cilindros de 460mm de diámetro, 580mm de carrera, totalizando una cilindrada unitaria de 96,4 litros, la renovación de la carga se consigue por medio de cuatro válvulas por cilindro, cuenta con un sistema de inyección directa de alta presión, enfriador de aire de barrido por intercambiador aire-agua, sistema Spex para el conducto de gases de escape y además cuenta con un turbocompresor de alta eficiencia. La gama de motores Wärtsilä 46, abarca desde motores de 6 cilindros en línea, hasta los más potentes de 16 cilindros en V. 

Figura 1: Corte transversal del motor marino Wärtsilä 46.


El motor marino de cuatro tiempos Wärtsilä 46 ha sido empleado en múltiples buques tales como los atuneros “Albatún 2” y “Panama Tuna”, buque tanque “Sten Idun”, crucero “Oasis of the Seas”, entre otros.


Figura 2: Sala de máquinas del Oasis of the Seas, con Wartsilla 46 como generadores eléctricos.

El periodo de solape de válvulas es durante el cual permanecen abiertas las válvulas de admisión y de escape al mismo tiempo, quedando en comunicación el colector de admisión y el colector de escape y permitiendo que el flujo de gases frescos que impulsa el compresor pase a la turbina. Para comprender mejor en lo que consiste el solape, la Figura 4 muestra el diagrama de distribución del motor marino de cuatro tiempos Wärtsilä 46. Tal y como se puede apreciar en la Figura, existe un solape durante el cual las válvulas de admisión y escape están abiertas al mismo tiempo, en este caso de 94º de ángulo de cigüeñal.


Figura 4: Diagrama de distribución del motor marino Wärtsilä 46.

El solape de válvulas es de crucial importancia en los grandes motores diesel de cuatro tiempos con elevada tasa de sobrealimentación actuales debido a los siguientes motivos:  
-       Permite mejorar la eliminación de los gases quemados expulsándolos hacia el escape, empleando para ello el flujo de aire entrante a elevada presión que es impulsado por el compresor.
-         El flujo de aire entrante por las válvulas de admisión a una temperatura relativamente baja representa una importante contribución en la refrigeración de las paredes de la cámara de combustión, cabeza de pistón y enfriamiento de las válvulas de escape.
-         Los gases frescos que se mezclan con los quemados y salen por los conductos de escape permiten reducir la temperatura de los gases de escape que llegan a la turbina del turbocompresor, evitando que la temperatura en las paletas de la turbina se aproxime a los límites compatibles con la resistencia mecánica.

Es por ello que en este tipo de motores se requiere que el periodo de barrido sea mayor que en otros motores, y para conseguir esto, el tiempo de solape de válvulas de ser particularmente amplio. El valor adecuado para el solape de válvulas es determinado para cada motor concreto en consonancia con los demás parámetros de diseño de ese motor. Como valores de referencia podemos indicar que el motor MAN 40-54 tenía un periodo de solape de 101,62º (54,62º+47º), el MAN 32-40 tiene valores un poco menores 89º (45º+44º),), el MACK 32 tiene un periodo de solape de 90º (45º+45º). Motores antiguos semirrapidos como el  MTU 16V 956 TB91 tiene un periodo de solape menor ya que solo tiene 61º (32º+29º), sin embargo mas moderno MAN 20-27 tiene valores de 100º (50º+50º), el motor rápido MAN D2840 LE tiene un periodo de solape de 51º (24º+27º). En motores de automóvil el periodo de solape tiende a reducirse e incluso a desaparecer con objeto de rebajar los consumos.

A pesar de las ventajas que proporciona un largo periodo de solape, alargarlo demasiado tiene como inconveniente que el barrido resulta defectuoso. Por tanto, es muy importante determinar el tiempo óptimo de solape en motores. Para demostrar una vez más en este blog las ventajas del CFD (Mecánica de Fluidos Computacional), se ha analizado el barrido de gases dentro del motor Wartsila 46, especialmente durante el solape de válvulas. La Figura 5 indica la malla utilizada para simular un cilindro de este motor. En la figura se ve el cilindro, conductos de admisión y escape y válvulas de admisión y escape. Se ha empleado una malla móvil para simular el movimiento del pistón desde 90º hasta 630º de ángulo de cigüeñal. La Figura 2 se refiere a la posición correspondiente a 180º.


Figura 5: Malla computacional del cilindro del Wartsilla 46.

En la Figura 6 se muestran los resultados obtenidos mediante CFD. Para ver con claridad lo que ocurre en el interior del cilindro. Se indica en color azul el aire fresco y en color rojo los gases de escape. Asimismo, las flechas indican la velocidad del flujo. Como se puede observar, la válvula de admisión se abre antes de que los gases de escape abandonen completamente el cilindro, y su considerable velocidad asiste en aspirar carga fresca.


Figura 6: Resultados obtenidos mediante análisis de CFD.


Con este breve artículo, recalcamos la importancia del CFD en aplicaciones navales, para estudios tan simples como la resistencia aerodinámica de un casco de un barco hasta simulaciones de cavitación en hélices o flujo en el interior de motores.


CURSOS RECOMENDADOS:

imagencurso Curso de CFD con OpenFOAM



FUENTES
: Wärtsilä, Grupo de innovaciones Marinas, OpenFOAM
 
Publicado el 2014-04-09 11:58:46 por Carlos Rodriguez & Isabel Lamas | Abrir
 
Métodos de control de emisiones en motores marinos
 

La nueva regulación IMO Tier III, cuya entrada en vigor se producirá en 2016, restringirá aún más los límites de emisión en las ECAs (Emisión Control Areas o Áreas de Control de Emisiones). En este caso se quiere establecer una reducción del 80% de las emisiones de NOx en comparación con la regulación IMO Tier I en las ECAs, con lo que el contenido en azufre en estas zonas será del 0,1% a partir de 2015.

Simulación de la inyección y combustión (campo de temperaturas) en un motor MAN D2840LE. Fuente: Grupo de Innovaciones Mariñas

Actualmente, más del 90% de los buques son movidos por motores. La mayoría de los combustibles de motores marinos son fuelóleos pesados, los cuales son más baratos que otros combustibles más refinados, pero presentan el inconveniente de que contienen una cantidad importante de sustancias contaminantes tales como azufre, cenizas, asfaltenos, etc, lo cual provoca que los buques emitan cantidades importantes de óxidos de azufre (SOx) y partículas. Además, los buques también emiten cantidades importantes de óxidos de nitrógeno (NOx) y dióxido de carbono (CO2).


Es muy importante reducir los óxidos de azufre de los gases de escape porque son los principales gases causantes de la lluvia ácida. Los óxidos de nitrógeno también contribuyen a la lluvia ácida y, además, destruyen la capa de ozono. Respecto a las partículas, son muy dañinas en los vegetales y en los animales y humanos pueden provocar serios problemas pulmonares e incluso llegar a causar cáncer. El dióxido de carbono no se considera un gas tóxico, pero también es muy importante reducirlo puesto que repercute en el calentamiento global del planeta.

Debido a la importancia de las emisiones contaminantes de los buques, principalmente óxidos de azufre, óxidos de nitrógeno, partículas y dióxido de carbono, a lo largo de los últimos años se han ido desarrollando diversas tecnologías. Destacan principalmente las medidas de reducción de óxidos de nitrógeno debido a la normativa IMO Tier, que limita los niveles de emisión de NOx a los siguientes valores, aplicados a motores construidos después del año 2000 (IMO Tier I), 2011 (IMO Tier II) y 2016 (IMO Tier III para áreas especiales).


De manera general, las medidas de reducción de emisiones se pueden agrupar en medidas primarias y secundarias. Las medidas primarias consisten en la modificación de algún parámetro relacionado con el funcionamiento del motor, por ejemplo inyección de combustible, diagrama de distribución, presión y temperatura de trabajo, etc. Por otro lado, las medidas secundarias reducen las emisiones en los gases de escape una vez que éstos ya han sido emitidos. Las principales medidas primarias y secundarias aplicadas en los motores de buques se resumen a continuación:


MEDIDAS PRIMARIAS

-         Modificación de los tiempos y el mapa de inyección de combustible:
Con el fin de conseguir una combustión más perfecta y con ello reducir las emisiones, en los motores actuales es frecuente jugar con el instante de comienzo de la inyección, presión de inyección, geometría de los inyectores o incluso realizar la inyección por tramos. En este sentido, destaca el sistema “common rail” basado en hacer pre-inyecciones o post-inyecciones antes y después de la inyección principal. De este modo se reduce la formación de NOx ya que esta depende tanto de la temperatura como del tiempo que dura el pico de alta temperatura. Con los modernos sistemas de inyección secuencial se puede conseguir alrededor de un 20%  de reducción de NOx con muy poco aumento en el consumo específico de combustible.

 



-         Enfriamiento del aire de admisión:
El aire que pasa por el turbo es aconsejable enfriarlo antes de entrar al motor. Con esta medida se reducen notablemente las emisiones de óxidos de nitrógeno puesto que éstos se originan cuanto más elevadas sean las temperaturas de combustión.



-         Inyección de agua:
Ésta es también una medida para reducir los óxidos de nitrógeno. Inyectando una pequeña cantidad de agua con el combustible, o bien en forma de humedad en el aire de barrido, lo que se consigue es reducir las temperaturas de combustión y con ello las emisiones de óxidos de nitrógeno.




-         Recirculación de gases de escape (EGR, exhaust gas recirculation):
Otra medida para reducir los óxidos de nitrógeno. Recirculando una pequeña parte de los gases de escape y mezclándolos con el aire de barrido también permiten una reducción de las temperaturas de combustión y con ello los óxidos de nitrógeno.




-         Ciclo Miller:
El ciclo Miller fue introducido en los motores diesel en primer lugar para reducir la emisiones de NOx, que como se sabe es una de sus principales desventajas. La idea es bajar la temperatura de combustión. El avance en el diseño de turbocompresores con mayores relaciones de compresión cada vez, permitió disminuir el trabajo de compresión mecánico para la misma presión final, de esta manera aumentando la capacidad de refrigeración después del turbocompresor, se puede mantener la temperatura de inicio de la compresión en los mismos valores, y por lo tanto la temperatura final de compresión disminuye.



Transformando un motor diese al ciclo Miller, se puede llegar a un 20% de reducción de Nox sin incrementar nada el consumo de combustible. El motor de media velocidad Sulzer ZA40S ha sido adaptado con éxito para operar con ciclo Millar, al igual que algunos motores del fabricante MAK.


MEDIDAS SECUNDARIAS:
Aunque es posible a un coste razonable reducir gran parte de los óxidos de nitrógeno con medidas primarias, también se utilizan medidas secuntarias. Las medid secundaria más utilizada para reducir los óxidos de nitrógeno es SCR (Reducción Catalítica Selectiva). El sistema se basa en la inyección de amoníaco o urea (que normalmente se comercializa mediante un compuesto llamado AdBlue) a los gases de escape. Este compuesto reacciona con los óxidos de nitrógeno produciendo nitrógeno y vapor de agua, los cuales no son contaminantes para el medio ambiente. Se llaman catalíticos (a diferencia de los SNCR, reducción no catalítica selectiva) porque emplean catalizadores con el fin de acelerar la velocidad de la reacción química.


Para reducir los óxidos de azufre, existen unos equipos llamados desulfuradores. Al igual que los SCR, el funcionamiento se basa en inyectar una sustancia que reaccione químicamente con el gas contaminante y el compuesto químico formado sea un gas nocivo o un sólido que precipita en un recipiente habilitado para ello. Esta medida es muy utilizada ya que es muy complicado y costoso reducir las emisiones de los óxidos de azufre utilizando medias primarias, al contrario de lo que se hace con los óxidos de nitrógeno.





CONCLUSIÓN
A nivel investigación, es posible analizar las emisiones de los motores utilizando CFD (Mecánica de Fluidos Computacional), pudiendo realizar simulaciones de diferentes patrones de inyección, humidificación del aire de carga, cambio de diagramas de distribución, ciclo Miller, recirculacion de gases de escape, y en general cualquier párametro de funcionamiento del motor puede ser simulado y probado de forma virtual por ordenador, con el correspondiente ahorro de tiempo y dinero antes de llevar a cabo las modificaciones y sucesivas pruebas reales en el motor. 

En anteriores ocasiones se han mostrado en este blog análisis del proceso de barrido de motores. De la misma manera, se puede analizar el proceso de combustión y emisiones contaminantes y con ello analizar el efecto que tiene cada una de las medidas descritas. Tecnología Marítima ha hecho diversos trabajos de este tipo en colaboración con el grupo de investigación Innovaciones Marinas, de la Universidade da Coruña. En este momento la línea de trabajo es análisis de los gases de escape utilizando medidas primarias, así como catalizadores. Todo ello mediante CFD.



La utilidad de las herramientas modernas de modelado y simulación con programas informáticos de simulación CFD son actualmente indiscutibles, permitiendo ensayar de manera virtual diferentes modelos o diseños antes de acometer la fabricación del prototipo industrial, proporcionando con esta metodología de trabajo, enormes ventajas y beneficios por ahorro de costes de fabricación de prototipos y acortamiento de los tiempos en el desarrollo del producto.


COURSES RECOMMENDED:

imagencursoCFD with OpenFOAM online course



LINKS:

- Revista Journal Of Maritime Research; Emissions from Marine Engines and Nox Reduction Methods  
MAN Diesel & Turbo - HOMEPAGE
- Grupo de Innovaciones Mariñas de la Universidad de La Coruña.

 
Publicado el 2014-04-11 12:04:42 por Isabel Lamas | Abrir
 
Historia del motor Fairbanks Morse 38-D8-1/8 y análisis comparativo frente a su competencia
 
El motor diesel de émbolos opuestos Fairbanks-Morse 38D8-1/8 fue inspirado en el avanzado motor diesel alemán de aviación Junkers Jumo 204, el cual entró en producción en 1932. A pesar de que el Fairbanks-Morse era más grande y pesado que el Junkers, y que además estaba destinado a la propulsión de buques y tracción ferroviaria, conservaba las características de alta potencia específica, bajo consumo específico y elevada densidad de potencia en comparación con los motores existentes para submarinos de esa época.


Fairbanks-Morse 38D8-1/8



Sección del motor Fairbanks-Morse 38D8-1/8 [1].



Junkers Jumo 204, motor diesel del bombardero Ju 86

A mediados de los años 30, cuando comenzó la producción del Fairbanks-Morse 38D8-1/8, el panorama era el siguiente. La marina de los Estados Unidos estaba interesada en construir grandes submarinos oceánicos de muy largo rango de acción con el fin de realizar largas patrullas por el Océano Pacífico. En ese momento, Estados Unidos poseía los grandes submarinos de flota Argonaut, Nautilus y Narwhal, el primero submarino minador y los dos siguientes submarinos cruceros. Éstos llevaban la clásica propulsión directa típica de los submarinos de esas fechas, con el motor diesel acoplado directamente al eje de salida, a continuación un embrague, después el motor/generador eléctrico, otro embrague, la reductora y finalmente el eje de la hélice. El USS Narwhall llevaba dos grandes motores principales BuEng (licencia MAN), 10 cilindros, 4 tiempos y 1750 kW, los cuales no demostraron un buen resultado, por lo cual se reemplazaron posteriormente por 4 Winton a principios de la guerra.


El gran submarino-crucero USS Narwhal (SS-167), one of the "V-boats"submarines.


USS Cuttlefish
(SC-5/SS-171), a Cachalot-class submarine, ("V-boats")

Esta disposición de la máquina con propulsión directa tenía algunos inconvenientes en cuanto a la propulsión de grandes submarinos oceánicos cuando se trataba de buscar una velocidad más elevada. El problema era que los motores diesel disponibles en esa época, con un tamaño y peso compatibles con el reducido espacio existente en submarinos, tenían una potencia bastante limitada para que esos grandes submarinos alcanzaran las velocidades requeridas, que eran del orden de 18 nudos o más. Una manera de aumentar la potencia de los motores era que crecieran en longitud aumentando el nº de cilindros, pero por encima de 10 cilindros en línea la fiabilidad se comprometía debido a las vibraciones. Otra solución era aumentar el número de motores, pero el problema era cómo transmitir la potencia de estos motores adicionales hasta las hélices, ya que no se podía utilizar la solución de cuatro hélices debido a la escasa manga de los submarinos.



Propulsión clásica en los submarinos alemanes, como la que llevaba el U-Boat type IX


Los submarinos Type XXI seguían una disposición similar en la planta propulsora, pero con motores eléctricos mucho más potentes.

La opción que se adoptó en los submarinos norteamericanos a partir de la clase Tambor fue la utilización de propulsión eléctrica permanente (tanto navegando en superficie como en inmersión) con motores de corriente continua alimentados por cuatro diesel-generadores con elevada densidad de potencia. Esta configuración se puede apreciar en la Fig. siguiente, la cual ilustra la planta propulsora de los submarinos de la clase Balao. La Fig.(b) representa un esquema con los motores eléctricos acoplados a reductoras y la Fig.(a) el sistema más moderno, con motores eléctricos de corriente continua directamente acoplados, los cuales giraban mucho más lentos y eran de mayor tamaño. Esta disposición aportó múltiples ventajas: aumento de la potencia instalada, posibilidad de ubicar los motores en la posición más conveniente, eliminación de embragues, flexibilidad en la producción de energía en caso de avería o mantenimiento en algún motor diesel, mejora del control de daños (damage control) aumentando su capacidad de supervivencia y, sobretodo, mejora en la utilización de la energía según las necesidades operativas (por ejemplo, desarrollo de la máxima potencia para recargar baterías, para propulsión, o múltiples combinaciones entre ambas). Los inconvenientes eran el coste y una ligera disminución de rendimiento global de la planta debido a la necesidad de realizar una doble conversión de la potencia mecánica-eléctrica y eléctrica-mecánica, así como por utilizar motores diesel más rápidos (los cuales generalmente tienen menor rendimiento térmico). Con el fin de mejorar en lo posible la eficiencia de la propulsión, en unidades posteriores se sustituyeron los motores eléctricos acoplados por medio de reductora por motores eléctricos acoplados directamente a la línea de ejes. Éstos se disponían en tandem, con dos unidades por eje y sin necesidad de reductora entre el motor eléctrico y el eje de cola, lo cual reducía las pérdidas en la transmisión de potencia, bajaba el ruido generado y mejoraba la fiabilidad del conjunto, U. S. Navy.


Planta propulsora de los submarinos de la case Balao, con propulsión eléctrica permanente. Con dos disposiciones para los motores electricos (a) Transmisión directa; (b) transmisión con reductora.
http://www.maritime.org/fleetsub/elect/foldout/fig2-01.htm


Los diesel generadores con alta densidad de potencia destinados a la propulsión de la nueva generación de submarinos norteamericanos inicialmente se reducían a tres fabricantes, cada uno de los cuales presentaba motores de concepto distinto y además con diseños muy audaces y avanzados para la época. Éstos eran Hooven-Owens-Rentschler, GM Cleveland Division (originalmente Winton) y Fairbanks-Morse.


Botadura del USS Lamprey (SS-372), a Balao-class submarine, el 18 de Junio de 1944

Hooven-Owens-Rentschler fabricó el H.O.R Modelo 99 DA, que era un motor de dos tiempos y doble efecto (con combustión por ambas caras del pistón) fabricado con licencia MAN. Había sido el motor utilizado en los cruceros alemanes de la clase de Leipzig, conocido como MAN 30/44. Este motor fue un completo fracaso debido a constantes problemas de falta de fiabilidad, por lo que pronto fue abandonado y los submarinos que los llevaban fueron remotorizados principalmente con los Winton, U. S. Navy.


Motores de dos tiempos y doble efecto producidos por la firma alemana MAN, y fabricados bajo licencia por la empresa Norteamericana Hooven-Owens-Rentschler.


USS Salmon fue uno de los Submarinos que incorporaron los nefastos H.O.R Modelo 99 DA, motores diesel de dos tiempos y doble efecto.


El motor original Winton fue el 201. Sus sucesores fueron el GM Cleveland 248, 258 y 278. Todos ellos eran motores diesel de dos tiempos y simple efecto, barrido uniflujo, con válvulas de escape en la culata y compresor de lóbulos tipo Roots. Estos motores eran de mayor velocidad (750 rpm) y mucho más ligeros que los motores diesel usados en los submarinos de esa época. El GM 16-278 dio bastante buen resultado, utilizándose con profusión en prácticamente todas las clases de submarinos norteamericanos durante la II Guerra Mundial, U. S. Navy.



USS Balao, submarinos que incorporaban tanto motores FM o GM



Sala de máquinas del submarino USS Cod, submarino Clase Gato, que llevaba  4 × General Motors Model 16-248 V16 

El motor Fairbanks-Morse 38D8-1/8 en el que se basa este artículo era de dos tiempos con barrido uniflujo, émbolos (o pistones) opuestos y compresor espiral de lóbulos tipo Roots. Existían las versiones de 9 y 10 cilindros, siendo esta última la preferida. Era un motor muy apreciado por su capacidad de soportar  el trato duro, mantenía bien las temperaturas y difícilmente entraba en sobrecarga, siendo además muy fiable y fácil de reparar, por lo que era el preferido de las tripulaciones que lo manejaban, U. S. Navy.




Sala de máquinas de un submarino de la clase Balao, equipada con 2 motores FM 38D8-1/8 cada una


El Krupp-GW F46a6pu era producido por la fábrica Krupp-Germaniawerft de Kiel. Los incorporaban los submarinos U-Boote del tipo VII. Las primeras versiones generaban 1400 CV a 470 rpm (versiones posteriores 1500 CV). Tenían una sola válvula de admisión y de escape, bombas de inyección individuales de la firma Bosch y eran reversibles (la “u” significa reversible, “umsteuerung”),.


 



El MAN M9V40/46 era producido en la fábrica MAN de Augsburg para el nuevo U-Boot del tipo IX, del que a finales de 1943 ya se habían ordenado 450 unidades. Eran motores de 9 cilindros sobrealimentados con turbo, que desarrollaban 2.200 CV a 470 rpm. El turbocompresor era un diseño independiente desarrollado a partir de una licencia de la casa Büchi de Mannheim en la fábrica de la marca Suiza Brown Boveri Company (BBC),.







El MAN M6V40/46 KBB fue desarrollado para los U-Boote del tipo XXI. Éstos eran una nueva versión de los existentes M6V40/46 (equivalentes de MAN a los Krupp-GW F46a6pu), modificados para incrementar considerablemente sus prestaciones. Un sistema de turbocompresor BBC con refrigeración por agua aumentaba la potencia hasta los 2.000 CV a 520 rpm. El M6V40/46 pasaría a denominarse M6V40/46KBB (Kreiselpumpe). La entrega de estos motores se retrasó debido al rediseño de algunas piezas para soportar el incremento de potencia (del 40% sobre el M6V40/46 original). Este motor no disponía de sistema de reversión de la marcha, para lo cual se empleaban los motores eléctricos.



 






Comparando estos motores llama la atención que, a pesar de ser motores que emplean técnicas muy diferentes, alcanzan cifras de rendimiento bastante igualadas, como es el caso del MAN M9V40/46 y el Fairbanks-Morse 38D8-1/8, los cuales superan el 37% a plena carga. Sin embargo, es importante mencionar que el motor alemán cuenta con la ventaja del turbocompresor y de operar con el ciclo de 4 tiempos. El rendimiento del GW F46a6pu, que lleva compresor mecánico, es sensiblemente inferior.

Otra cualidad interesante de los motores norteamericanos es que a pesar de girar a más revoluciones la velocidad media del pistón es todavía más reducida que en los motores alemanes, esto da idea de lo conservador de su diseño para la obtención de una buena fiabilidad y resistencia al desgaste.

Un apartado importante para los submarinos es el dato de la densidad de potencia (kW/t), en el cual se imponen claramente los motores nortemericanos. El hecho de trabajar con el ciclo de dos tiempos, operar a más altas revoluciones y poseer menores cilindradas les otorga una considerable ventaja.

Por tanto, según los datos recogidos en la Tabla se puede concluir que los motores norteamericanos demuestran, al menos sobre el papel, superioridad técnica frente a los motores alemanes, los igualan en consumo específico de combustible y los mejoran claramente en densidad de potencia y compacidad. En el apartado de fiabilidad, los indicadores de velocidad media de pistón, presión media efectiva, presión de barrido y cilindrada unitaria también otorgan algunos datos favorables a los motores norteamericanos. La eficacia de su diseño también se confirmó a partir de los informes de sus tripulaciones y la evidencia de su amplio programa de producción.

La disposición de la maquinaria de los submarinos de la USS Navy, con los generadores de diesel independientes y motores eléctricos de propulsión, se convirtió en el estándar de la posguerra para submarinos convencionales (no nucleares) en otras marinas de guerra, y todavía se usa en la actualidad mientras no se imponga otra alternativa como podría ser la propulsión con pila de combustible.


Submarino clase Daphne, con los generadores diesel independientes de la propulsión que es siempre con motores eléctricos.


ENLACES RELACIONADOS:

1- Motor de émbolos opuestos Fairbanks Morse 38D8-1/8. Análisis CFD del proceso de barrido

2- Motores diesel en los Uboote

3- Revista Ingeniería Naval, nº 905, julio/agosto 2012:
"Descripción técnica y análisis CFD del motor marino  de émbolos opuestos Fairbanks-Morse 3808-1/8", por C. Rodríguez Vidal y M.I. Lamas Galdo.

4- U.S. NAVY. The FleetType Submarine, 1946, ISBN 1411677536.

5- RODRIGUEZ VIDAL, Carlos; ANTELO GONZÁLEZ Felipe. Sistemas de distribución en motores lentos de dos tiempos con barrido uniflujo, en lazo y transversal. Ingeniería de Mantenimiento Marítimo. 2009, pp. 46-51.

6- Wikipedia, USS Narwhal, USS Cod, USS Lamprey, Type VI, IX, XXI, etc


 
Publicado el 2014-01-06 01:20:04 por C. Rodriguez & I. Lamas | Abrir
 
Entradas 56 a 58 de 58 << Anterior

 

norplan
2024 © NORPLAN ENGINEERING S.L. - C/ Ramón Cabanillas nº 13, 15570, Narón, A Coruña, España (Spain)
Tlf: +34 600 826 122 - info@technicalcourses.net