Este sitio web utiliza cookies para mejorar la experiencia de usuario y obtener datos estadísticos. Si continua navegando se considera que acepta nuestra política de cookies. Aceptar
MODIFICACIÓN DEL PROCEDIMIENTO PARA LA CERTIFICACIÓN DE LA EFICIENCIA ENERGETICA DE EDIFICIOS
 

El pasado 14 de diciembre, el Ministerio de Industria, energía y turismo publicó una nota informativa;

NOTA INFORMATIVA: MODIFICACIÓN DEL PROCEDIMIENTO PARA LA CERTIFICACIÓN DE LA EFICIENCIA ENERGETICA DE EDIFICIOS

según la cual y debido a las actualizaciones de 2013 del Documento Básico de Ahorro de Energía (DB-HE) del Código Técnico de la Edificación (CTE) y el Reglamento de Instalaciones Térmicas de los Edificios (RITE), se revisan los procedimientos de certificación energética de los edificios.

 

Para ello y tras el período de transición establecido, a partir del 14 de enero de 2016 los respectivos registros de las Comunidades y Ciudades Autónomas solo admitirán certificados generados con las nuevas versiones de los programas reconocidos;

CE3X versión.2.1.,

CE3 versión 2375.1015,

HULC versión 20151113, y

CERMA versión 4.





CURSOS RECOMENDADOS:

- Curso de Certificación Energética en Edificios Existentes CE3 y CE3x

- Curso de Certificación Energética en Edificios Existentes CE3x

- Curso de Certificación Energética en Edificios Existentes CE3


 
Publicado el 2016-02-03 10:27:59 por Diego Villanueva | Abrir
 
INTERPRETACIÓN DE ANÁLISIS DE LUBRICANTES EN MOTORES DIESEL (II)
 
Tanto en buques como en plantas eléctricas terrestres con motores diesel, es norma habitual que periódicamente se retiren muestras de aceite de lubricación de los motores y se envíen a analizar a laboratorios especializados externos, con el fin de determinar el estado en que se encuentra el lubricante en cada momento. Este es un servicio que normalmente están ofreciendo los diferentes proveedores de lubricantes y suele ir incluido en el contrato de suministro, por lo que no suele tener coste extra.

 

Una vez analizadas las muestras de aceites lubricantes, los resultados son enviados de vuelta a los técnicos de mantenimiento de la planta, o del buque. En este momento son los miembros del departamento de mantenimiento o de máquinas, los que deben diagnosticar estos resultados y advertir si se está produciendo un mal funcionamiento en los motores relacionado con la lectura de las condiciones en que se encuentra el aceite.


En caso de observar desviaciones importantes en algún parámetro, respecto a los valores considerados como normales o aceptables para ese motor diesel, se deben poner en marcha actuaciones que lleven a corregir este funcionamiento anómalo detectado.

 

Los motores diesel debido a su funcionamiento generan una serie de productos en la combustión, los cuales se combinan entre ellos dando lugar a una serie de compuestos y efectos nada deseables.

 

El siguiente gráfico explica de una manera sencilla y visual estos procesos y sus efectos, contra los que se mantiene una lucha constante siempre enfocada al buen funcionamiento y operatividad de los motores.

 

Estos productos de la combustión afectan en gran medida a los lubricantes empleados, los cuales son los encargados de mitigar sus efectos en la medida de lo posible. Con ello sufren degradación, pérdida o aumento de viscosidad, incremento en la acidez, emulsiones y diluciones debido a presencia de agua o combustible, etc.

 

Gracias a los análisis de aceite y a una correcta y acertada interpretación de los mismos el responsable del mantenimiento de estos equipos y maquinaria podrá “predecir” futuras averías o actuar modificando parámetros para evitarlas.

 

Existe a día de hoy y basada en la experiencia acumulada a lo largo de lo años mucha información sobre la analítica de lubricantes industriales. Como ejemplo se muestra la siguiente tabla, en la que se presentan los valores orientativos de los niveles de contaminación (concentraciones standard de elementos metálicos) de diferentes elementos que podemos encontrar en el aceite. Consultándola podremos determinar el posible origen del problema con una primera aproximación al mismo bastante acertada.

Elementos (ppm)

Fe
Al
Cr
Cu
Na
Si
Situación
35
8
3
15
12
15
Normal
92
29
16
20
16
69
Entrada severa de suciedad
38
9
4
124
243
101
Fuga interna de refrigerante
35
8
3
15
12
250
Utilización de sellos de silicona
36
10
5
10
19
31
Alto nivel de antiespumantes
105
134
38
20
21
145
Fallo en el sistema de inyección
120
25
10
35
12
68
Entrada de suciedad externa


Los efectos que una contaminación excesiva por elementos metálicos en el aceite se traducen como mínimo en desgastes excesivos de cojinetes y elementos entre los que exista una fricción, la cual el efecto del lubricante tiene que disminuir.


El no hacer caso o no darle la importancia necesarias a los análisis de aceites lubricantes puede llevar a consecuencias catastróficas en los motores de combustión interna, provocando en ocasiones la destrucción parcial de los mismos o de elementos vitales.


Es importante mencionar que el laboratorio realiza un análisis del aceite desde el punto de vista químico, pero deben ser los técnicos de mantenimiento o oficiales de máquinas del buque los que deben localizar el origen de esta desviación en los parámetros normales, y actuar en consecuencia para anticiparse a una posible futura avería, que en muchos casos puede ocasionar fallos catastróficos de la máquina.

 



LINKS: 



CURSOS DE FORMACIÓN RELACIONADOS:

Si desea recibir cursos de  formación relacionados con esta temática, le recomendamos que realice los cursos de Technical Courses:

http://www.technicalcourses.net

Technical Courses está especializado en la impartición de actividades formativas en todo el mundo, destinados a cubrir la necesidades de cualificación de personal técnico, nuestros cursos se encuentran estrechamente ligados a las tendencias del mundo laboral y las necesidades formativas de las empresas.


 
Publicado el 2016-08-04 00:05:53 por Santi Rey | Abrir
 
La importancia de saber interpretar correctamente los esquemas eléctricos
 

El mundo industrial del mantenimiento, conducción y operación tanto de maquinaria, sistemas mecánicos o plantas completas se encuentra rodeado y dependiente en gran medida de la electricidad y en consecuencia de sus equipos, elementos y la diversa y muy variada aparamenta eléctrica utilizada.

 En consecuencia a ello es de suponer que la naturaleza de los fallos y averías de estos equipos industriales sea en gran medida eléctrica. Y aunque dichos fallos en la mayoría de los casos no son de gravedad, si lo es el tiempo que la máquina o planta queda fuera de servicio, ya sea en parte o en su totalidad. Con lo cual el disponer de una buena documentación de esquemas y planos eléctricos de estas instalaciones es de vital importancia a la hora de localizar y solucionar estas averías de la mejor y más ágil manera.


Imagen nº1

Estos esquemas eléctricos de las instalaciones en muchas ocasiones constan de varias páginas (en muchos casos más de 40 hojas) y a primera vista resultan complicados de interpretar y comprender. Y es que aunque tengamos conocimientos a la hora de trabajar con esquemas eléctricos industriales, cuando nos enfrentamos a instalaciones completas no solo necesitaremos hacer uso de esos conocimientos en electricidad, y es que estos conjuntos de esquemas no solo muestran el cableado y la aparamenta instalados, sino que también constan de hojas en donde se muestran las regletas de conexión, listas de materiales, vistas interiores y exteriores de los cuadros eléctricos, etc.


Imagen nº2

 

Manejarse a lo largo de todas las hojas que componen la instalación completa de los equipos y sistemas industriales con los que trabajamos es vital y aunque las oficinas técnicas siguen una normativa de representación y numeración de conexiones, deberemos tener presente que hay instalaciones de todo tipo que van desde equipos con varias décadas de uso con esquemas antiguos hasta fabricantes de todas partes del mundo. Con lo cual lograr una unificación mundial a la hora de dibujar y representar estos esquemas iguales se nos antoja casi imposible.


Imagen nº3

 La soltura en lo referente a la interpretación de esquemas eléctricos de instalaciones industriales es la práctica, es decir, que a mayor número y variedad de planos que estudiemos mayor habilidad obtendremos e iremos adquiriendo una destreza mental e innata de tal manera que terminaremos por manejarnos con agilidad a través de la mayoría de estos circuitos eléctricos sin que algún tipo de aparamenta o elemento (temporizaciones, sensores, relés, plcs, etc.) nos obstaculice esta labor.


Imagen nº4


Imagen nº5

 Recordando que prácticamente el 100% de la maquinaria industrial tiene una parte eléctrica más o menos importante, nos damos cuenta porqué es interesante poseer conocimientos en lo referente a la interpretación de las instalaciones eléctricas de estos equipos. Ya que esta habilidad se traducirá en localización acertada de fallos con lo que esto conlleva (mayor fiabilidad y menores tiempos de paradas por averías, lo cual implica reducción de costes), capacidad para modificar una instalación existente ya sea para mejorarla o simplemente modernizarla y sobre todo la tranquilidad que supone el tener controlada la parte eléctrica de los equipos con los que trabajamos.


CURSOS DE FORMACIÓN RELACIONADOS:

Si desea recibir cursos de  formación relacionados con esta temática, le recomendamos que realice los cursos de Technical Courses:

http://www.technicalcourses.net

Technical Courses está especializado en la impartición de actividades formativas en todo el mundo, destinados a cubrir la necesidades de cualificación de personal técnico, nuestros cursos se encuentran estrechamente ligados a las tendencias del mundo laboral y las necesidades formativas de las empresas.




 
Publicado el 2018-03-26 12:14:16 por Santi Rey | Abrir
 
INTERPRETACIÓN DE ANÁLISIS DE LUBRICANTES EN MOTORES DIESEL (I)
 
En los motores diésel la importancia de mantener el buen estado del aceite lubricante es cada día más fundamental. Ello es debido a que los motores modernos están sometidos cada vez a más altas temperaturas, presiones máximas de combustión, sobrecarga en la alimentación, etc. Y si bien es cierto que la tecnología y desarrollo de los lubricantes actuales cubre perfectamente las necesidades por parte de los motores, el conservar los parámetros de calidad de los aceites (filtración, depuración, periodos de cambio de aceite, etc.) es fundamental no solo para el buen funcionamiento de las máquinas sino para evitar averías, que en muchos casos resultan catastróficas o cuanto menos provocan costes económicos que en determinadas ocasiones podrían haberse evitado.



No solo manteniendo unas adecuadas condiciones del aceite lubricante del motor logramos evitar estos fallos. Para minimizar el número de averías y prolongar la vida del motor, es vital combinar el mantenimiento del aceite  y sistema de lubricación con un correcto y completo sistema de análisis de laboratorio en el cual se midan determinados parámetros (viscosidad, opacidad, dispersancia, etc.) tanto de la calidad del aceite como de los elementos y materiales de desgaste que éste contiene (presencia de agua, sílice, etc.).



Los propios fabricantes de lubricantes industriales poseen programas de análisis y seguimiento de equipos todos ellos de gran calidad y fiabilidad. Con laboratorios modernos capaces de detectar la más mínima alteración en los parámetros y concentraciones de los aceites.

Dichos fabricantes que nos suministran los lubricantes también nos ofrecen la posibilidad de entrar dentro de sus programas de seguimiento y análisis de aceites de nuestros equipos proporcionándonos los kits para la toma de muestras y realizando un estudio de lubricación de nuestros equipos (no solo motores de combustión interna) en el cual nos asignan unas referencias para cada uno de ellos.

Una vez nosotros recogemos las muestras de aceite de manera adecuada procedemos a su envío y recibimos los resultados de los mismos pasados unos días.


 

Haciendo un resumen, por un lado tenemos el mantenimiento preventivo basado en lo que mencionábamos al principio de este artículo, y que se centra en mantener tanto el sistema de lubricación del motor como el propio aceite en perfectas condiciones, combinando la depuración del aceite, filtración y respetando periodos de cambio del mismo según lo indicado en cada manual de instrucciones.

Y por el otro tenemos un mantenimiento predictivo para el cual debemos poseer los conocimientos adecuados para emitir los informes correspondientes y saber cuándo debemos acometer una operación de mantenimiento o reparación basándonos siempre en pruebas y diagnósticos fehacientes.

Es por ello que la correcta interpretación de los análisis de los aceites usados o en servicio tanto de motores diésel como de cualquier otra maquinaria industrial (equipos hidráulicos, propulsiones, etc.), es vital para diagnosticar con antelación los posibles fallos y averías que se puedan producir.

Una interpretación adecuada de estos análisis elimina posibles falsos supuestos y nos encauza a la localización de la futura avería, desgaste excesivo, etc. Todo esto se traduce en mayor fiabilidad de la maquinaria, operaciones de mantenimiento adecuadas y reducción de costes de operación ya que en algunos casos las averías por fallos en la lubricación o en el lubricante utilizado pueden ser catastróficas.





CURSOS DE FORMACIÓN RELACIONADOS:

Si desea recibir cursos de  formación relacionados con esta temática, le recomendamos que realice los cursos de Technical Courses:

http://www.technicalcourses.net

Technical Courses está especializado en la impartición de actividades formativas en todo el mundo, destinados a cubrir la necesidades de cualificación de personal técnico, nuestros cursos se encuentran estrechamente ligados a las tendencias del mundo laboral y las necesidades formativas de las empresas.


 
 
Publicado el 2016-08-04 00:06:20 por Santi Rey | Abrir
 
Análisis CFD de un motor de 2T
 

Desde sus comienzos, el motor de dos tiempos ha sido ampliamente utilizado en aplicaciones de pequeña y mediana potencias debido a su sencillez, ligereza, tamaño compacto, elevada potencia específica y robustez. Los principales inconvenientes frente al motor de cuatro tiempos son el elevado consumo de combustible y la producción de contaminación. Sin embargo, recientemente mejoras como la incorporación de la inyección directa y la unidad de control por computadora han propiciado el resurgimiento de este tipo de motores.


Es bien conocido que para el buen funcionamiento de un motor, tanto de cuatro como de dos tiempos, el proceso de renovación de la carga de gases frescos es fundamental (Arias-Paz, 2000; Blair, 1996). Un inconveniente general que presentan los motores de dos tiempos se debe a la utilización de un diagrama de distribución simétrico, ya que la renovación de la carga dentro del cilindro es gobernada por el propio pistón al subir y bajar, abriendo y cerrando las lumbreras de transferencia y de escape. Para que no se produzcan retrocesos al cárter, la presión dentro de la cámara debe ser inferior a la de las lumbreras de transferencia.

Para conseguir esto las lumbreras de escape deben ser abiertas antes que las de transferencia, lo cual tiene como consecuencia negativa la pérdida de cierta cantidad de gases frescos por el escape. Otro inconveniente es el cortocircuito, que tiene lugar cuando los gases frescos pasan directamente al escape dejando volúmenes de gases quemados sin ser barridos dentro del cilindro. El arrastre de gases frescos y el cortocircuito constituyen las principales desventajas de los motores de dos tiempos puesto que influyen muy negativamente en el rendimiento, consumo y generación de gases contaminantes.

La principal dificultad que aparece a la hora de diseñar un sistema de barrido eficaz es que son muchas las variables implicadas en el proceso: geometría, diseño de las lumbreras, tiempos de admisión y escape, relación de compresión, dosado, etc., siendo necesario un estudio detallado de cada uno de estos parámetros. Aunque actualmente se dispone de técnicas experimentales muy avanzadas para proporcionar información del flujo en el interior del cilindro, la dinámica de fluidos computacional (CFD) ofrece un método alternativo que permite reducir el coste de dinero y tiempo que supone un montaje experimental. El término CFD proviene de las siglas del inglés “Computational Fluid Dynamics”, lo cual se traduce al castellano como “Mecánica de Fluidos Computacional”. Es una rama de mecánica de fluidos que utiliza procedimientos iterativos para conocer en detalle las características de los flujos. En los últimos años, el avance del CFD y de la computación ha dado lugar a la generalización de uso en la industria.

El motor estudiado en el presente trabajo es monocilíndrico, con tres lumbreras de transferencia de forma rectangular y una lumbrera de escape de forma elíptica. Las características más importantes se enumeran a continuación:


-       Tipo de Motor: Dos tiempos, Otto

-       Cilindrada: 127,3 cm³

-       Relación de compresión: 9,86:1

-       Diámetro x Carrera: 53,8 x 56 mm

-       Longitud de biela: 110 mm

-       Sistema de barrido: Barrido tipo Schnuerle o a lazo, multitransfers

-       Sistema de combustible: Inyección directa

-       Sistema de lubricación: Aceite mezclado con el aire de admisión

-       Instante de ignición: -20º antes de P.M.S.

-       Escape, apertura/cierre Duración: 158º; A: 101º; C: 259º después de P.M.S.

-       Transferencia, apertura/cierre Duración: 127º; A:116,5º; C: 243,5º después de P.M.S.

-       Potencia: 7,5 kW

-       Revoluciones: 6.000 rpm

En este trabajo se ha estudiado solamente el proceso de barrido sin considerar la combustión, para lo cual el instante inicial ha tenido que elegirse tal que la combustión se encuentre completada. Concretamente se ha simulado desde 90º de ángulo de cigüeñal hasta 270º, realizándose un total de 180º de recorrido, correspondiendo a 0,005 segundos, debido a que el motor gira a 6.000 rpm.

 

Fases del análisis:

Todo proceso de análisis CFD se compone de 3 etapas:

-       Preproceso o generación de la malla computacional.

-       Cálculo mediante la solución de las ecuaciones gobernantes.

-       Postproceso o visualización de los resultados.

 

Malla 3D:

Malla 3D estructurada a partir de elementos hexagonales.

 

 

Cálculo CFD:

Las ecuaciones gobernantes son las clásicas de mecánica de fluidos de conservación de la masa, cantidad de movimiento y energía. El proceso se ha modelado como mezcla de dos especies, aire y gases quemados, ambas con comportamiento de gases ideales. Se podrían modelar todos los componentes que intervienen realmente, pero al no estar tratando la combustión, la influencia en los resultados sería prácticamente irrelevante.

En cuanto a turbulencia, se ha empleado el modelo k-ε estandar debido a que tiene la ventaja de ser robusto, computacionalmente económico y lo suficientemente preciso para un amplio rango de casos. El tratamiento en las regiones cercanas a las paredes ha sido mediante las funciones estándar de pared.

 

Visualización de Resultados:

La siguiente secuencia de imágenes muestra el campo de velocidades durante el proceso de barrido para valores del ángulo de cigüeñal de 92,5º, 190º, 215º y 270º. Se muestra claramente como en las lumbreras de entrada (tranferencia) circulan gases frescos hacia el interior del cilindro y en la lumbrera de escape salen gases quemados. Además, en el interior del cilindro se observa como los gases frescos desplazan a los quemados dentro de la cámara de combustión. Las zonas de color rojo muestran velocidades más elevadas y en azul las velocidades más bajas, la escala no es la misma se va adaptando al rango de valores para cada paso de tiempo.




VIDEO DE LA SIMULACIÓN (campo de velocidades)





CURSOS DE FORMACIÓN RELACIONADOS:

Si desea recibir cursos de  formación relacionados con esta temática, le recomendamos que realice los cursos de Technical Courses:

http://www.technicalcourses.net

Technical Courses está especializado en la impartición de actividades formativas en todo el mundo, destinados a cubrir la necesidades de cualificación de personal técnico, nuestros cursos se encuentran estrechamente ligados a las tendencias del mundo laboral y las necesidades formativas de las empresas.

Para análisis CFD recomendamos el software gratuito OpenFOAM, que permite reproducir y simular el funcionamiento de los motores de combustión interna.

Por medio del curso de Technical Courses en idioma español o en inglés, se puede introducir en el manejo de este potente Software de CFD.

- Curso online CFD con OpenFOAM

 
Publicado el 2016-05-02 13:56:44 por C.Rodriguez | Abrir
 
Entradas 6 a 10 de 62 << Anterior Siguiente >>

 

norplan
2019 © NORPLAN ENGINEERING S.L. - C/ Ramón Cabanillas nº 13, 15570, Narón, A Coruña, España (Spain)
Tlf: +34 600 826 122 - info@technicalcourses.net